@article{OertelBung2012, author = {Oertel, Mario and Bung, Daniel Bernhard}, title = {Initial stage of two-dimensional dam-break waves: laboratory versus VOF}, series = {Journal of hydraulic research}, volume = {50}, journal = {Journal of hydraulic research}, number = {1}, publisher = {Taylor \& Francis}, address = {London}, issn = {1814-2079 (E-Journal); 0022-1686 (Print)}, doi = {10.1080/00221686.2011.639981}, pages = {89 -- 97}, year = {2012}, abstract = {Since several decades, dam-break waves have been of main research interest. Mathematical approaches have been developed by analytical, physical and numerical models within the past 120 years. During the past 10 years, the number of research investigations has increased due to improved measurement techniques as well as significantly increased computer memories and performances. In this context, the present research deals with the initial stage of two-dimensional dam-break waves by comparing physical and numerical model results as well as analytical approaches. High-speed images and resulting particle image velocimetry calculations are thereby compared with the numerical volume-of-fluid (VOF) method, included in the commercial code FLOW-3D. Wave profiles and drag forces on placed obstacles are analysed in detail. Generally, a good agreement between the laboratory and VOF results is found.}, language = {en} } @inproceedings{OertelBung2012, author = {Oertel, Mario and Bung, Daniel Bernhard}, title = {Characteristics of cross-bar block ramp flows}, series = {Hydraulic structures into the 21st century : 4th IAHR International Symposium on Hydraulic Structures : 9.-11.2.2012, Porto}, booktitle = {Hydraulic structures into the 21st century : 4th IAHR International Symposium on Hydraulic Structures : 9.-11.2.2012, Porto}, organization = {International Symposium on Hydraulic Structures <4, 2012, Porto>}, isbn = {978-989-8509-01-7}, pages = {Elektronisch publiziert}, year = {2012}, language = {en} } @inproceedings{OertelBung2013, author = {Oertel, Mario and Bung, Daniel Bernhard}, title = {Comparison of 2D dam-break waves with VOF and SPH method}, series = {Proceedings of the 35th IAHR world congress : 8.-13.9.2013, Chengdu, China}, booktitle = {Proceedings of the 35th IAHR world congress : 8.-13.9.2013, Chengdu, China}, publisher = {Tsinghua Univ. Press}, address = {Beijing}, organization = {International Association for Hydraulic Engineering and Research}, pages = {Artikelkennnummer: A11113}, year = {2013}, language = {en} } @inproceedings{OertelBalmesBung2015, author = {Oertel, Mario and Balmes, Jan P. and Bung, Daniel Bernhard}, title = {Numerical simulation of erosion processes on crossbar block ramps}, series = {E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands}, booktitle = {E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands}, organization = {IAHR World Congress <36, 2015, Den Haag>}, pages = {1 -- 8}, year = {2015}, language = {en} } @inproceedings{OertelBungSchlenkhoff2009, author = {Oertel, M. and Bung, Daniel Bernhard and Schlenkhoff, Andreas}, title = {Flash flood awareness and prevention}, series = {Water engineering for sustainable environment : 33rd IAHR congress ; 9 - 14 August 2009, Vancouver, British Columbia, Canada}, booktitle = {Water engineering for sustainable environment : 33rd IAHR congress ; 9 - 14 August 2009, Vancouver, British Columbia, Canada}, organization = {International Association for Hydraulic Engineering and Research}, isbn = {9789078046080}, pages = {1 CD-ROM}, year = {2009}, language = {en} } @inproceedings{OertelBung2016, author = {Oertel, M. and Bung, Daniel Bernhard}, title = {Scouring processes downstream a crossbar block ramp}, series = {Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016}, booktitle = {Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016}, editor = {Crookston, B. and Tullis, B.}, isbn = {978-1-884575-75-4}, doi = {10.15142/T3340628160853}, pages = {549 -- 559}, year = {2016}, language = {en} } @inproceedings{MuellerHueben2008, author = {M{\"u}ller, Karsten and H{\"u}ben, Susanne}, title = {From rehabilitation strategy up to formation of lots : implementation of a computer-aided decision support system}, series = {11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 31st August to 5th September 2008}, booktitle = {11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 31st August to 5th September 2008}, pages = {12 S. : graph. Darst.}, year = {2008}, language = {en} } @inproceedings{MuellerFischer2009, author = {M{\"u}ller, Karsten and Fischer, B.}, title = {Objective condition assessment of sewer systems}, series = {Strategic asset management of water supply and wastewater infrastructures : invited papers from the 2nd IWA Leading Edge Conference on Strategic Asset Management (LESAM), Lisbon, October [17 - 19] 2007 / ed. by Helene Alegre and Maria do C{\´e}u Almeida}, booktitle = {Strategic asset management of water supply and wastewater infrastructures : invited papers from the 2nd IWA Leading Edge Conference on Strategic Asset Management (LESAM), Lisbon, October [17 - 19] 2007 / ed. by Helene Alegre and Maria do C{\´e}u Almeida}, publisher = {IWA Publ.}, address = {London}, isbn = {9781843391869}, pages = {521 -- 534}, year = {2009}, language = {en} } @inproceedings{MohanGrossMenzeletal.2021, author = {Mohan, Nijanthan and Groß, Rolf Fritz and Menzel, Karsten and Theis, Fabian}, title = {Opportunities and Challenges in the Implementation of Building Information Modeling for Prefabrication of Heating, Ventilation and Air Conditioning Systems in Small and Medium-Sized Contracting Companies in Germany - A Case Study}, series = {WIT Transactions on The Built Environment, Vol. 205}, booktitle = {WIT Transactions on The Built Environment, Vol. 205}, publisher = {WIT Press}, address = {Southampton}, issn = {1743-3509}, doi = {10.2495/BIM210101}, pages = {117 -- 126}, year = {2021}, abstract = {Even though BIM (Building Information Modelling) is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, prefabrication is chosen for this paper because it plays a vital role in creating an impact on the time and cost factors of a construction project. The project stakeholders and participants can explicitly observe the positive impact of prefabrication, which enables the breakthrough of the scepticism factor among the small-scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction followed by a practical approach, which was executed with two case studies. It was planned in such a way that, the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM Models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the time analysis was made and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal wastes, better accuracy, less problem-solving at the construction site. It was observed that this process requires more planning time, better communication between different disciplines, which was the major obstacle for successful implementation. This paper was carried out from the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany.}, language = {en} } @inproceedings{MerkensHebel2021, author = {Merkens, Torsten and Hebel, Christoph}, title = {Sharing mobility concepts - flexible, sustainable, smart}, series = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, booktitle = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, isbn = {978-3-902103-94-9}, pages = {43 -- 44}, year = {2021}, language = {en} } @article{LopesLeandroCarvalhoetal.2017, author = {Lopes, Pedro and Leandro, Jorge and Carvalho, Rita F. and Bung, Daniel Bernhard}, title = {Alternating skimming flow over a stepped spillway}, series = {Environmental Fluid Mechanics}, volume = {17}, journal = {Environmental Fluid Mechanics}, number = {2}, publisher = {Springer}, address = {Berlin}, issn = {1573-1510}, doi = {10.1007/s10652-016-9484-x}, pages = {303 -- 322}, year = {2017}, language = {en} } @inproceedings{LopesBungLeandroetal.2015, author = {Lopes, Pedro and Bung, Daniel Bernhard and Leandro, Jorge and Carvalho, Rita F.}, title = {The effect of cross-waves in physical stepped spillway models}, series = {E-proceedings of the 36th IAHR World Congress ; 28 June - 3 July, 2015, The Hague, the Netherlands}, booktitle = {E-proceedings of the 36th IAHR World Congress ; 28 June - 3 July, 2015, The Hague, the Netherlands}, organization = {International Association for Hydro-Environment Engineering and Research}, pages = {1 -- 9}, year = {2015}, language = {en} } @article{LeandroBungCarvalho2014, author = {Leandro, J. and Bung, Daniel Bernhard and Carvalho, R.}, title = {Measuring void fraction and velocity fields of a stepped spillway for skimming flow using non-intrusive methods}, series = {Experiments in fluids}, journal = {Experiments in fluids}, number = {55}, publisher = {Springer Nature}, address = {Heidelberg}, issn = {0723-4864 (Print) ; 1432-1114 (Online)}, doi = {10.1007/s00348-014-1732-6}, pages = {Art. 1732}, year = {2014}, language = {en} } @techreport{LawsonBaddooVanieretal.2013, author = {Lawson, R.M. and Baddoo, N.R. and Vanier, G. and D{\"o}ring, Bernd and Kuhnhenne, M. and Nieminen, J. and Beguin, P. and Herbin, S. and Caroli, G. and Adetunji, I. and Kozlowski, A.}, title = {Renovation of buildings using steel technologies (Robust) - EUR 25335}, publisher = {Publications Office of the European Union}, address = {Luxembourg}, organization = {European Commission}, isbn = {978-92-79-24950-1}, issn = {1831-9424}, doi = {10.2777/97860}, pages = {134 Seiten}, year = {2013}, abstract = {Robust addresses the renovation and improvement of existing residential, industrial and commercial buildings using steel-based technologies, focusing on techniques such as over-cladding, over-roofing and roof-top extensions. Steel-intensive renovation techniques currently on the market were reviewed. Performance criteria were developed for over-cladding systems meeting current regulatory standards, with guidelines on how to achieve appropriate levels of air-tightness.}, language = {en} } @inproceedings{LangohrBungCrookston2022, author = {Langohr, Philipp and Bung, Daniel Bernhard and Crookston, Brian M.}, title = {Hybrid investigation of labyrinth weirs: Discharge capacity and energy dissipation}, series = {Proceedings of the 39th IAHR World Congress}, booktitle = {Proceedings of the 39th IAHR World Congress}, editor = {Ortega-S{\´a}nchez, Miguel}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, address = {Madrid}, isbn = {978-90-832612-1-8}, issn = {2521-7119 (print)}, doi = {10.3850/IAHR-39WC252171192022738}, pages = {2313 -- 2318}, year = {2022}, abstract = {The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs.}, language = {en} } @article{KuhnhenneRegerPyschnyetal.2020, author = {Kuhnhenne, Markus and Reger, Vitali and Pyschny, Dominik and D{\"o}ring, Bernd}, title = {Influence of airtightness of steel sandwich panel joints on heat losses}, series = {E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020)}, volume = {172}, journal = {E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020)}, number = {Art. 05008}, publisher = {EDP Sciences}, address = {Les Ulis}, doi = {10.1051/e3sconf/202017205008}, pages = {6}, year = {2020}, abstract = {Energy saving ordinances requires that buildings must be designed in such a way that the heat transfer surface including the joints is permanently air impermeable. The prefabricated roof and wall panels in lightweight steel constructions are airtight in the area of the steel covering layers. The sealing of the panel joints contributes to fulfil the comprehensive requirements for an airtight building envelope. To improve the airtightness of steel sandwich panels, additional sealing tapes can be installed in the panel joint. The influence of these sealing tapes was evaluated by measurements carried out by the RWTH Aachen University - Sustainable Metal Building Envelopes. Different installation situations were evaluated by carrying out airtightness tests for different joint distances. In addition, the influence on the heat transfer coefficient was also evaluated using the Finite Element Method (FEM). The combination of obtained air volume flow and transmission losses enables to create an "effective heat transfer coefficient" due to transmission and infiltration. This summarizes both effects in one value and is particularly helpful for approximate calculations on energy efficiency.}, language = {en} } @inproceedings{KuhnhenneDoeringPyschnyetal.2012, author = {Kuhnhenne, Markus and D{\"o}ring, Bernd and Pyschny, Dominik and Feldmann, Markus}, title = {Energy efficient sandwich construction}, series = {Proceedings of the VI International Congress on Architectural Envelopes : 20.6. - 22.6.2012, San Sebastian, Spain}, booktitle = {Proceedings of the VI International Congress on Architectural Envelopes : 20.6. - 22.6.2012, San Sebastian, Spain}, publisher = {ICAE}, organization = {International Congress on Architectural Envelopes <6, 2012, San Sebastian>}, pages = {277 -- 285}, year = {2012}, language = {en} } @article{KramerValeroChansonetal.2019, author = {Kramer, Matthias and Valero, Daniel and Chanson, Hubert and Bung, Daniel Bernhard}, title = {Towards reliable turbulence estimations with phase-detection probes: an adaptive window cross-correlation technique}, series = {Experiments in Fluids}, volume = {60}, journal = {Experiments in Fluids}, publisher = {Springer}, address = {Berlin}, issn = {1432-1114}, doi = {10.1007/s00348-018-2650-9}, year = {2019}, language = {en} } @article{KolymbasFellinKirsch2006, author = {Kolymbas, Dimitrios and Fellin, W. and Kirsch, Ansgar}, title = {Squeezing due to stress relaxation in foliated rock}, series = {International journal for numerical and analytical methods in geomechanics}, volume = {Vol. 30}, journal = {International journal for numerical and analytical methods in geomechanics}, number = {Iss. 13}, issn = {1096-9853 (E-Journal); 0363-9061 (Print)}, doi = {10.1002/nag.530}, pages = {1357 -- 1367}, year = {2006}, language = {en} } @article{KirsteinMuellerWaleckiMingersetal.2012, author = {Kirstein, Simon and M{\"u}ller, Karsten and Walecki-Mingers, Mark and Deserno, Thomas M.}, title = {Robust adaptive flow line detection in sewer pipes}, series = {Automation in construction}, journal = {Automation in construction}, number = {21}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-7891 (E-Journal) ; 0926-5805 (Print)}, doi = {10.1016/j.autcon.2011.05.009}, pages = {24 -- 31}, year = {2012}, abstract = {As part of a novel approach to automatic sewer inspection, this paper presents a robust algorithm for automatic flow line detection. A large image repository is obtained from about 50,000 m sewers to represent the high variability of real world sewer systems. Automatic image processing combines Canny edge detection, Hough transform for straight lines and cost minimization using Dijkstra's shortest path algorithm. Assuming that flow lines are mostly smoothly connected horizontal structures, piecewise flow line delineation is reduced to a process of selecting adjacent line candidates. Costs are derived from the gap between adjacent candidates and their reliability. A single parameter α enables simple control of the algorithm. The detected flow line may precisely follow the segmented edges (α = 0.0) or minimize gaps at joints (α = 1.0). Both, manual and ground truth-based analysis indicate that α = 0.8 is optimal and independent of the sewer's material. The algorithm forms an essential step to further automation of sewer inspection.}, language = {en} }