@article{SiqueiraAbouzarBaeckeretal.2009, author = {Siqueira, Jos{\´e} R. Jr. and Abouzar, Maryam H. and B{\"a}cker, Matthias and Zucolotto, Valtencir and Poghossian, Arshak and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Carbon nanotubes in nanostructured films: Potential application as amperometric and potentiometric field-effect (bio-)chemical sensors}, series = {physica status solidi (a) . 206 (2009), H. 3}, journal = {physica status solidi (a) . 206 (2009), H. 3}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {462 -- 467}, year = {2009}, language = {en} } @article{SiqueiraWernerBaeckeretal.2009, author = {Siqueira, Jose R. and Werner, Frederik and B{\"a}cker, Matthias and Poghossian, Arshak and Zucolotto, Valtencir and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Layer-by-Layer Assembly of Carbon Nanotubes Incorporated in Light-Addressable Potentiometric Sensors}, series = {Journal of Physical Chemistry C. 113 (2009), H. 33}, journal = {Journal of Physical Chemistry C. 113 (2009), H. 33}, publisher = {American Chemical Society}, address = {Washington, DC}, isbn = {1932-7455}, pages = {14765 -- 14770}, year = {2009}, language = {en} } @article{SiqueiraMolinnusBegingetal.2014, author = {Siqueira, Jose R. and Molinnus, Denise and Beging, Stefan and Sch{\"o}ning, Michael Josef}, title = {Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection}, series = {Analytical chemistry}, volume = {86}, journal = {Analytical chemistry}, number = {11}, publisher = {ACS Publications}, address = {Columbus}, issn = {1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print)}, doi = {10.1021/ac500458s}, pages = {5370 -- 5375}, year = {2014}, abstract = {The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor's surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance-voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (∼18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform.}, language = {en} } @article{SiqueiraMakiPaulovichetal.2010, author = {Siqueira, Jose R. and Maki, Rafael M. and Paulovich, Fernando V. and Werner, Frederik and Poghossian, Arshak and Oliveira, Maria C. F. de and Zucolotto, Valtencir and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Use of Information Visualization Methods Eliminating Cross Talk in Multiple Sensing Units Investigated for a Light-Addressable Potentiometric Sensor}, series = {Analytical Chemistry (2010)}, journal = {Analytical Chemistry (2010)}, isbn = {0003-2700}, pages = {61 -- 65}, year = {2010}, language = {en} } @inproceedings{SimsekKrauseEngelmann2024, author = {Simsek, Beril and Krause, Hans-Joachim and Engelmann, Ulrich M.}, title = {Magnetic biosensing with magnetic nanoparticles: Simulative approach to predict signal intensity in frequency mixing magnetic detection}, series = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, booktitle = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {27 -- 28}, year = {2024}, abstract = {Magnetic nanoparticles (MNP) are investigated with great interest for biomedical applications in diagnostics (e.g. imaging: magnetic particle imaging (MPI)), therapeutics (e.g. hyperthermia: magnetic fluid hyperthermia (MFH)) and multi-purpose biosensing (e.g. magnetic immunoassays (MIA)). What all of these applications have in common is that they are based on the unique magnetic relaxation mechanisms of MNP in an alternating magnetic field (AMF). While MFH and MPI are currently the most prominent examples of biomedical applications, here we present results on the relatively new biosensing application of frequency mixing magnetic detection (FMMD) from a simulation perspective. In general, we ask how the key parameters of MNP (core size and magnetic anisotropy) affect the FMMD signal: by varying the core size, we investigate the effect of the magnetic volume per MNP; and by changing the effective magnetic anisotropy, we study the MNPs' flexibility to leave its preferred magnetization direction. From this, we predict the most effective combination of MNP core size and magnetic anisotropy for maximum signal generation.}, language = {en} } @article{SimonisRugeMuellerVeggianetal.2003, author = {Simonis, A. and Ruge, C. and M{\"u}ller-Veggian, Mattea and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {A long-term stable macroporoustype EIS structure for electrochemical sensor applications}, series = {Sensors and Actuators B. 91 (2003), H. 1-3}, journal = {Sensors and Actuators B. 91 (2003), H. 1-3}, isbn = {0925-4005}, pages = {21 -- 25}, year = {2003}, language = {en} } @article{SimonisLuethWangetal.2004, author = {Simonis, A. and L{\"u}th, H. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems}, series = {Sensors and Actuators B. 103 (2004), H. 1-2}, journal = {Sensors and Actuators B. 103 (2004), H. 1-2}, isbn = {0925-4005}, pages = {429 -- 435}, year = {2004}, language = {en} } @article{SimonisLuethWangetal.2003, author = {Simonis, A. and L{\"u}th, H. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {Strategies of miniaturised reference electrodes integrated in a silicon-based „one chip" pH sensor}, series = {Sensors. 3 (2003), H. 9}, journal = {Sensors. 3 (2003), H. 9}, isbn = {1424-8220}, pages = {330 -- 339}, year = {2003}, language = {en} } @article{SimonisKringsLuethetal.2001, author = {Simonis, A. and Krings, T. and L{\"u}th, H. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {A „hybrid" thin-film pH sensor with integrated thick-film reference}, series = {Sensors. 1 (2001), H. 6}, journal = {Sensors. 1 (2001), H. 6}, isbn = {1424-8220}, pages = {183 -- 192}, year = {2001}, language = {en} } @article{SimonisDawgulLuethetal.2005, author = {Simonis, A. and Dawgul, M. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Miniaturised reference electrodes for field-effect sensors compatible to silicon chip technology}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, doi = {10.1016/j.electacta.2005.04.063}, pages = {930 -- 937}, year = {2005}, language = {en} } @article{SildatkeKarwanniKraftetal.2023, author = {Sildatke, Michael and Karwanni, Hendrik and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {A distributed microservice architecture pattern for the automated generation of information extraction pipelines}, series = {SN Computer Science}, journal = {SN Computer Science}, number = {4, Article number: 833}, publisher = {Springer Singapore}, address = {Singapore}, issn = {2661-8907}, doi = {10.1007/s42979-023-02256-4}, pages = {19 Seiten}, year = {2023}, abstract = {Companies often build their businesses based on product information and therefore try to automate the process of information extraction (IE). Since the information source is usually heterogeneous and non-standardized, classic extract, transform, load techniques reach their limits. Hence, companies must implement the newest findings from research to tackle the challenges of process automation. They require a flexible and robust system that is extendable and ensures the optimal processing of the different document types. This paper provides a distributed microservice architecture pattern that enables the automated generation of IE pipelines. Since their optimal design is individual for each input document, the system ensures the ad-hoc generation of pipelines depending on specific document characteristics at runtime. Furthermore, it introduces the automated quality determination of each available pipeline and controls the integration of new microservices based on their impact on the business value. The introduced system enables fast prototyping of the newest approaches from research and supports companies in automating their IE processes. Based on the automated quality determination, it ensures that the generated pipelines always meet defined business requirements when they come into productive use.}, language = {en} } @inproceedings{SildatkeKarwanniKraftetal.2020, author = {Sildatke, Michael and Karwanni, Hendrik and Kraft, Bodo and Schmidts, Oliver and Z{\"u}ndorf, Albert}, title = {Automated Software Quality Monitoring in Research Collaboration Projects}, series = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, booktitle = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, doi = {10.1145/3387940.3391478}, pages = {603 -- 610}, year = {2020}, language = {en} } @article{SiepmannSchuhLevering1998, author = {Siepmann, Thomas and Schuh, G. and Levering, V.}, title = {PROPLAN / Schuh, G.; Siepmann, Th.; Levering, V.}, series = {Handbook on architectures of information systems : with 24 tables / Peter Bernus ... (ed.)}, journal = {Handbook on architectures of information systems : with 24 tables / Peter Bernus ... (ed.)}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-64453-9}, pages = {IX, 834 S. : graph. Darst.}, year = {1998}, language = {en} } @article{SiepmannRupietta1993, author = {Siepmann, Thomas and Rupietta, D.}, title = {Closer to the customer with computerized product support}, series = {Technische Mitteilungen Krupp (1993)}, journal = {Technische Mitteilungen Krupp (1993)}, address = {Essen}, year = {1993}, language = {en} } @book{Siepmann1997, author = {Siepmann, Thomas}, title = {Modeller for Value Systems}, publisher = {Erasmus Universiteit Rotterdam}, address = {Rotterdam}, year = {1997}, language = {en} } @article{Siepmann1999, author = {Siepmann, Thomas}, title = {Exploitation Plan of the TELEflow Project}, address = {Brussels}, year = {1999}, language = {en} } @inproceedings{SiekmannMueller2011, author = {Siekmann, Thomas and M{\"u}ller, Karsten}, title = {Adaptive potential of the stormwater management in urban areas faced by the climate change}, series = {12th International Conference on Urban Drainage, Porto Alegre/Brazil, 11-16 September 2011}, booktitle = {12th International Conference on Urban Drainage, Porto Alegre/Brazil, 11-16 September 2011}, pages = {9 S.}, year = {2011}, language = {en} } @article{SiekerNeunerDimitrovaetal.2011, author = {Sieker, Tim and Neuner, Andreas and Dimitrova, Darina and Tippk{\"o}tter, Nils and Muffler, Kai and Bart, Hans-J{\"o}rg and Heinzle, Elmar and Ulber, Roland}, title = {Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: First steps in the process development}, series = {Engineering in Life Sciences}, volume = {11}, journal = {Engineering in Life Sciences}, number = {4}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/elsc.201000160}, pages = {436 -- 442}, year = {2011}, abstract = {Grass silage provides a great potential as renewable feedstock. Two fractions of the grass silage, a press juice and the fiber fraction, were evaluated for their possible use for bioethanol production. Direct production of ethanol from press juice is not possible due to high concentrations of organic acids. For the fiber fraction, alkaline peroxide or enzymatic pretreatment was used, which removes the phenolic acids in the cell wall. In this study, we demonstrate the possibility to integrate the enzymatic pretreatment with a simultaneous saccharification and fermentation to achieve ethanol production from grass silage in a one-process step. Achieved yields were about 53 g ethanol per kg silage with the alkaline peroxide pretreatment and 91 g/kg with the enzymatic pretreatment at concentrations of 8.5 and 14.6 g/L, respectively. Furthermore, it was shown that additional supplementation of the fermentation medium with vitamins, trace elements and nutrient salts is not necessary when the press juice is directly used in the fermentation step.}, language = {en} } @incollection{SiegertPohlKneenetal.2004, author = {Siegert, Petra and Pohl, Martina and Kneen, Malea M. and Pogozheva, Irina D. and Kenyon, George L. and McLeish, Michael J.}, title = {Exploring the substrate specificity of benzoylformate decarboxylase, pyruvate decarboxylase, and benzaldehyde lyase}, series = {Thiamine : catalytic mechanisms in normal and disease states / ed. by Frank Jordan ...}, booktitle = {Thiamine : catalytic mechanisms in normal and disease states / ed. by Frank Jordan ...}, publisher = {Dekker}, address = {New York, NY}, isbn = {0-8247-4062-9}, pages = {275 -- 290}, year = {2004}, language = {en} } @article{SiegertMcLeishBaumannetal.2005, author = {Siegert, Petra and McLeish, Michael J. and Baumann, Martin and Iding, Hans and Kneen, Malea M. and Kenyon, George L. and Pohl, Martina}, title = {Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida}, series = {Protein engineering, design, and selection : peds}, volume = {Vol. 18}, journal = {Protein engineering, design, and selection : peds}, number = {Iss. 7}, issn = {1460-213X (E-Journal); 1741-0134 (E-Journal); 0269-2139 (Print); 1741-0126 (Print)}, pages = {345 -- 357}, year = {2005}, language = {en} }