@article{VahidpourOberlaenderSchoening2018, author = {Vahidpour, Farnoosh and Oberl{\"a}nder, Jan and Sch{\"o}ning, Michael Josef}, title = {Flexible Calorimetric Gas Sensors for Detection of a Broad Concentration Range of Gaseous Hydrogen Peroxide: A Step Forward to Online Monitoring of Food-Package Sterilization Processes}, series = {Phys. Status Solidi A}, volume = {215}, journal = {Phys. Status Solidi A}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, doi = {10.1002/pssa.201800044}, pages = {Artikel 1800044}, year = {2018}, abstract = {In this study, flexible calorimetric gas sensors are developed for specificdetection of gaseous hydrogen peroxide (H₂O₂) over a wide concentrationrange, which is used in sterilization processes for aseptic packaging industry.The flexibility of these sensors is an advantage for identifying the chemical components of the sterilant on the corners of the food boxes, so-called "coldspots", as critical locations in aseptic packaging, which are of great importance. These sensors are fabricated on flexible polyimide films by means of thin-film technique. Thin layers of titanium and platinum have been deposited on polyimide to define the conductive structures of the sensors. To detect the high-temperature evaporated H₂O₂, a differential temperature set-up is proposed. The sensors are evaluated in a laboratory-scaled sterilizationsystem to simulate the sterilization process. The concentration range of the evaporated H₂O₂ from 0 to 7.7\% v/v was defined and the sensors have successfully detected high as well as low H₂O₂ concentrations with a sensitivity of 5.04 °C/\% v/v. The characterizations of the sensors confirm their precise fabrication, high sensitivity and the novelty of low H₂O₂ concentration detections for future inline monitoring of food-package sterilization.}, language = {en} } @article{Thomas2018, author = {Thomas, Axel}, title = {Technologiezentren in der Aachener Region - Retrospektiven und Perspektiven}, series = {VM Verwaltung und Management}, volume = {24}, journal = {VM Verwaltung und Management}, number = {3}, publisher = {Nomos}, address = {Baden-Baden}, issn = {0947-9856}, doi = {10.5771/0947-9856-2018-3-147}, pages = {147 -- 156}, year = {2018}, language = {de} } @article{Thomas2018, author = {Thomas, Axel}, title = {Zielerreichungen der Technologie- und Gr{\"u}nderzentren aus Sicht der kommunalen Finanzwirtschaft - dargestellt am Beispiel der Aachener Region}, series = {Der Gemeindehaushalt}, volume = {119}, journal = {Der Gemeindehaushalt}, number = {7}, publisher = {Kohlhammer}, address = {Stuttgart}, issn = {0340-3645}, pages = {149 -- 155}, year = {2018}, language = {de} } @article{TeumerCapitainRossJonesetal.2018, author = {Teumer, T. and Capitain, C. and Ross-Jones, J. and Tippk{\"o}tter, Nils and R{\"a}dle, M. and Methner, F.-J.}, title = {In-line Haze Monitoring Using a Spectrally Resolved Back Scattering Sensor}, series = {BrewingScience}, volume = {71}, journal = {BrewingScience}, number = {5/6}, publisher = {Fachverlag Hans Carl}, address = {N{\"u}rnberg}, issn = {1613-2041}, pages = {49 -- 55}, year = {2018}, abstract = {In the present work an optical sensor in combination with a spectrally resolved detection device for in-line particle-size-monitoring for quality control in beer production is presented. The principle relies on the size and wavelength dependent backscatter of growing particles in fluids. Measured interference structures of backscattered light are compared with calculated theoretical values, based on Mie-Theory, and fitted with a linear least square method to obtain particle size distributions. For this purpose, a broadband light source in combination with a process-CCD-spectrometer (charge ? coupled device spectrometer) and process adapted fiber optics are used. The goal is the development of an easy and flexible measurement device for in-line-monitoring of particle size. The presented device can be directly installed in product fill tubes or vessels, follows CIP- (cleaning in place) and removes the need of sample taking. A proof of concept and preliminary results, measuring protein precipitation, are presented.}, language = {en} } @article{TekinAshikagaHorikawaetal.2018, author = {Tekin, Nurettin and Ashikaga, Mitsugu and Horikawa, Atsushi and Funke, Harald}, title = {Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems}, series = {Gas for energy}, journal = {Gas for energy}, number = {2}, publisher = {Vulkan-Verlag}, address = {Essen}, pages = {4}, year = {2018}, abstract = {For fuel flexibility enhancement hydrogen represents a possible alternative gas turbine fuel within future low emission power generation, in case of hydrogen production by the use of renewable energy sources such as wind energy or biomass. Kawasaki Heavy Industries, Ltd. (KHI) has research and development projects for future hydrogen society; production of hydrogen gas, refinement and liquefaction for transportation and storage, and utilization with gas turbine / gas engine for the generation of electricity. In the development of hydrogen gas turbines, a key technology is the stable and low NOx hydrogen combustion, especially Dry Low Emission (DLE) or Dry Low NOx (DLN) hydrogen combustion. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for DLE hydrogen combustion. Thus, the development of DLE hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fueled gas turbines. The DLE Micro-Mix combustion principle for hydrogen fuel has been in development for many years to significantly reduce NOx emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized "diffusion-type" flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of the reactants in the flame region of the micro-flames.}, language = {en} } @article{SvaneborgKarimiVarzanehHojdisetal.2018, author = {Svaneborg, Carsten and Karimi-Varzaneh, Hossein Ali and Hojdis, Nils and Fleck, Franz and Everaers, Ralf}, title = {Kremer-Grest Models for Universal Properties of Specific Common Polymer Species}, series = {Soft Condensed Matter}, journal = {Soft Condensed Matter}, number = {1606.05008}, year = {2018}, abstract = {The Kremer-Grest (KG) bead-spring model is a near standard in Molecular Dynamic simulations of generic polymer properties. It owes its popularity to its computational efficiency, rather than its ability to represent specific polymer species and conditions. Here we investigate how to adapt the model to match the universal properties of a wide range of chemical polymers species. For this purpose we vary a single parameter originally introduced by Faller and M{\"u}ller-Plathe, the chain stiffness. Examples include polystyrene, polyethylene, polypropylene, cis-polyisoprene, polydimethylsiloxane, polyethyleneoxide and styrene-butadiene rubber. We do this by matching the number of Kuhn segments per chain and the number of Kuhn segments per cubic Kuhn volume for the polymer species and for the Kremer-Grest model. We also derive mapping relations for converting KG model units back to physical units, in particular we obtain the entanglement time for the KG model as function of stiffness allowing for a time mapping. To test these relations, we generate large equilibrated well entangled polymer melts, and measure the entanglement moduli using a static primitive-path analysis of the entangled melt structure as well as by simulations of step-strain deformation of the model melts. The obtained moduli for our model polymer melts are in good agreement with the experimentally expected moduli.}, language = {en} } @article{SunAltherrPeietal.2018, author = {Sun, Hui and Altherr, Lena and Pei, Ji and Pelz, Peter F. and Yuan, Shouqi}, title = {Optimal booster station design and operation under uncertain load}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.102}, pages = {102 -- 115}, year = {2018}, abstract = {Given industrial applications, the costs for the operation and maintenance of a pump system typically far exceed its purchase price. For finding an optimal pump configuration which minimizes not only investment, but life-cycle costs, methods like Technical Operations Research which is based on Mixed-Integer Programming can be applied. However, during the planning phase, the designer is often faced with uncertain input data, e.g. future load demands can only be estimated. In this work, we deal with this uncertainty by developing a chance-constrained two-stage (CCTS) stochastic program. The design and operation of a booster station working under uncertain load demand are optimized to minimize total cost including purchase price, operation cost incurred by energy consumption and penalty cost resulting from water shortage. We find optimized system layouts using a sample average approximation (SAA) algorithm, and analyze the results for different risk levels of water shortage. By adjusting the risk level, the costs and performance range of the system can be balanced, and thus the system's resilience can be engineered}, language = {en} } @article{SchwabedalSippelBrandtetal.2018, author = {Schwabedal, Justus T. C. and Sippel, Daniel and Brandt, Moritz D. and Bialonski, Stephan}, title = {Automated Classification of Sleep Stages and EEG Artifacts in Mice with Deep Learning}, doi = {10.48550/arXiv.1809.08443}, year = {2018}, abstract = {Sleep scoring is a necessary and time-consuming task in sleep studies. In animal models (such as mice) or in humans, automating this tedious process promises to facilitate long-term studies and to promote sleep biology as a data-driven f ield. We introduce a deep neural network model that is able to predict different states of consciousness (Wake, Non-REM, REM) in mice from EEG and EMG recordings with excellent scoring results for out-of-sample data. Predictions are made on epochs of 4 seconds length, and epochs are classified as artifactfree or not. The model architecture draws on recent advances in deep learning and in convolutional neural networks research. In contrast to previous approaches towards automated sleep scoring, our model does not rely on manually defined features of the data but learns predictive features automatically. We expect deep learning models like ours to become widely applied in different fields, automating many repetitive cognitive tasks that were previously difficult to tackle.}, language = {en} } @article{SchmidtEnningPfaff2018, author = {Schmidt, Bernd and Enning, Manfred and Pfaff, Raphael}, title = {G{\"u}terwagen 4.0 - Der G{\"u}terwagen f{\"u}r das Internet der Dinge Teil 3: Einf{\"u}hrungsszenarien f{\"u}r aktive, kommunikative G{\"u}terwagen}, series = {ETR - Eisenbahntechnische Rundschau}, volume = {67}, journal = {ETR - Eisenbahntechnische Rundschau}, number = {5}, publisher = {DVV Media Group}, address = {Hamburg}, issn = {0013-2845}, pages = {60 -- 64}, year = {2018}, abstract = {Wenn durch innovative, automatisierte G{\"u}terwagen betriebswirtschaftliche Vorteile nutzbar gemacht werden sollen, muss die Migration auf das neue System in sinnvollen Teilschritten unter Ber{\"u}cksichtigung der organisationellen und betrieblichen Vereinbarkeit vorgenommen werden. Eine stufenweise Migration mit Nachr{\"u}stbarkeit und Kompatibilit{\"a}t kann die optimale Ausstattungsvariante f{\"u}r die unterschiedlichen Betriebsszenarien sowie eine Steigerung der Wirtschaftlichkeit des Gesamtsystems bieten.}, language = {de} } @article{SchirraBissonnetteBramesfeld2018, author = {Schirra, Julian and Bissonnette, William and Bramesfeld, G{\"o}tz}, title = {Wake-model effects on induced drag prediction of staggered boxwings}, series = {Aerospace}, volume = {5}, journal = {Aerospace}, number = {1}, issn = {2226-4310}, doi = {10.3390/aerospace5010014}, year = {2018}, language = {en} } @article{SchifferFerrein2018, author = {Schiffer, Stefan and Ferrein, Alexander}, title = {ERIKA—Early Robotics Introduction at Kindergarten Age}, series = {Multimodal Technologies Interact}, volume = {2}, journal = {Multimodal Technologies Interact}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2414-4088}, doi = {10.3390/mti2040064}, pages = {15}, year = {2018}, abstract = {In this work, we report on our attempt to design and implement an early introduction to basic robotics principles for children at kindergarten age. One of the main challenges of this effort is to explain complex robotics contents in a way that pre-school children could follow the basic principles and ideas using examples from their world of experience. What sets apart our effort from other work is that part of the lecturing is actually done by a robot itself and that a quiz at the end of the lesson is done using robots as well. The humanoid robot Pepper from Softbank, which is a great platform for human-robot interaction experiments, was used to present a lecture on robotics by reading out the contents to the children making use of its speech synthesis capability. A quiz in a Runaround-game-show style after the lecture activated the children to recap the contents they acquired about how mobile robots work in principle. In this quiz, two LEGO Mindstorm EV3 robots were used to implement a strongly interactive scenario. Besides the thrill of being exposed to a mobile robot that would also react to the children, they were very excited and at the same time very concentrated. We got very positive feedback from the children as well as from their educators. To the best of our knowledge, this is one of only few attempts to use a robot like Pepper not as a tele-teaching tool, but as the teacher itself in order to engage pre-school children with complex robotics contents.}, language = {en} } @article{RoethPielenWolffetal.2018, author = {R{\"o}th, Thilo and Pielen, Michael and Wolff, Klaus and L{\"u}diger, Thomas}, title = {Urbane Fahrzeugkonzepte f{\"u}r die Shared Mobility}, series = {Automobiltechnische Zeitschrift - ATZ}, volume = {120}, journal = {Automobiltechnische Zeitschrift - ATZ}, number = {1}, publisher = {Springer Vieweg}, address = {Wiesbaden}, issn = {0001-2785}, doi = {10.1007/s35148-017-0176-8}, pages = {18 -- 23}, year = {2018}, abstract = {Urbane Mobilit{\"a}tskonzepte der Zukunft erfordern neue Unternehmensformen, idealerweise aus Old Economy und New Economy, sowie eine enge Anbindung an die gesellschaftsrelevante Zukunftsforschung. F{\"u}r neue Fahrzeugkonzepte des Carsharing bedeutet dies, dass alle kostenverursachenden Faktoren erfasst und analysiert werden m{\"u}ssen. Die FH Aachen, share2drive und FEV geben einen Ausblick auf die zuk{\"u}nftige Fahrzeugklasse der Personal Public Vehicles als „Rolling Device".}, language = {de} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @article{RuppSchulzeKuperjans2018, author = {Rupp, Matthias and Schulze, Sven and Kuperjans, Isabel}, title = {Comparative life cycle analysis of conventional and hybrid heavy-duty trucks}, series = {World electric vehicle journal}, volume = {9}, journal = {World electric vehicle journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2032-6653}, doi = {10.3390/wevj9020033}, pages = {Article No. 33}, year = {2018}, abstract = {Heavy-duty trucks are one of the main contributors to greenhouse gas emissions in German traffic. Drivetrain electrification is an option to reduce tailpipe emissions by increasing energy conversion efficiency. To evaluate the vehicle's environmental impacts, it is necessary to consider the entire life cycle. In addition to the daily use, it is also necessary to include the impact of production and disposal. This study presents the comparative life cycle analysis of a parallel hybrid and a conventional heavy-duty truck in long-haul operation. Assuming a uniform vehicle glider, only the differing parts of both drivetrains are taken into account to calculate the environmental burdens of the production. The use phase is modeled by a backward simulation in MATLAB/Simulink considering a characteristic driving cycle. A break-even analysis is conducted to show at what mileage the larger CO2eq emissions due to the production of the electric drivetrain are compensated. The effect of parameter variation on the break-even mileage is investigated by a sensitivity analysis. The results of this analysis show the difference in CO2eq/t km is negative, indicating that the hybrid vehicle releases 4.34 g CO2eq/t km over a lifetime fewer emissions compared to the diesel truck. The break-even analysis also emphasizes the advantages of the electrified drivetrain, compensating the larger emissions generated during production after already a distance of 15,800 km (approx. 1.5 months of operation time). The intersection coordinates, distance, and CO2eq, strongly depend on fuel, emissions for battery production and the driving profile, which lead to nearly all parameter variations showing an increase in break-even distance.}, language = {en} } @article{RosinButenwegCacciatoreetal.2018, author = {Rosin, Julia and Butenweg, Christoph and Cacciatore, Pamela and Boesen, Niklas}, title = {Investigation of the seismic performance of modern masonry buildings during the Emilia Romagna earthquake series}, series = {Mauerwerk}, volume = {22}, journal = {Mauerwerk}, number = {4}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1022}, doi = {10.1002/dama.201800013}, pages = {238 -- 250}, year = {2018}, abstract = {The article presents the investigation of the seismic behaviour of a modern URM building located in the municipality of Finale Emilia in province of Modena, Northern Italy. The building is situated in the centre of the series of the 2012 Northern Italy earthquakes and has not suffered any damage during the earthquake series in 2012. The observed earthquake resistance of the building is compared with predicted resistances based on linear and nonlinear design approaches according to Eurocode. Furthermore, probabilistic analyses based on nonlinear calculation models taking into account scattering of the most relevant input parameters are carried out to identify their influence to the results and to derive fragility curves.}, language = {en} } @article{RodriguesMoraisNordietal.2018, author = {Rodrigues, Raul T. and Morais, Paulo V. and Nordi, Cristina S. F. and Sch{\"o}ning, Michael Josef and Siqueira Jr., Jos{\´e} R. and Caseli, Luciano}, title = {Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films}, series = {Langmuir}, volume = {34}, journal = {Langmuir}, number = {9}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-5827}, doi = {10.1021/acs.langmuir.7b04317}, pages = {3082 -- 3093}, year = {2018}, abstract = {Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.}, language = {en} } @article{RittwegerAlbrachtFluecketal.2018, author = {Rittweger, J{\"o}rn and Albracht, Kirsten and Fl{\"u}ck, Martin and Ruoss, Severin and Brocca, Lorenza and Longa, Emanuela and Moriggi, Manuela and Seynnes, Olivier and Di Giulio, Irene and Tenori, Leonardo and Vignoli, Alessia and Capri, Miriam and Gelfi, Cecilia and Luchinat, Claudio and Franceschi, Claudio and Bottinelli, Roberto and Cerretelli, Paolo and Narici, Marco}, title = {Sarcolab pilot study into skeletal muscle's adaptation to longterm spaceflight}, series = {npj Microgravity}, volume = {4}, journal = {npj Microgravity}, number = {1}, publisher = {Nature Portfolio}, issn = {2373-8065}, doi = {10.1038/s41526-018-0052-1}, pages = {1 -- 9}, year = {2018}, language = {en} } @article{RiekeStollenwerkDahmenetal.2018, author = {Rieke, Christian and Stollenwerk, Dominik and Dahmen, Markus and Pieper, Martin}, title = {Modeling and optimization of a biogas plant for a demand-driven energy supply}, series = {Energy}, volume = {145}, journal = {Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-5442}, doi = {10.1016/j.energy.2017.12.073}, pages = {657 -- 664}, year = {2018}, abstract = {Due to the Renewable Energy Act, in Germany it is planned to increase the amount of renewable energy carriers up to 60\%. One of the main problems is the fluctuating supply of wind and solar energy. Here biogas plants provide a solution, because a demand-driven supply is possible. Before running such a plant, it is necessary to simulate and optimize the process. This paper provides a new model of a biogas plant, which is as accurate as the standard ADM1 model. The advantage compared to ADM1 is that it is based on only four parameters compared to 28. Applying this model, an optimization was installed, which allows a demand-driven supply by biogas plants. Finally the results are confirmed by several experiments and measurements with a real test plant.}, language = {en} } @article{RauschFriesenAltherretal.2018, author = {Rausch, Lea and Friesen, John and Altherr, Lena and Meck, Marvin and Pelz, Peter F.}, title = {A holistic concept to design optimal water supply infrastructures for informal settlements using remote sensing data}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {2}, publisher = {MDPI}, address = {Basel}, isbn = {2072-4292}, doi = {10.3390/rs10020216}, pages = {1 -- 23}, year = {2018}, abstract = {Ensuring access to water and sanitation for all is Goal No. 6 of the 17 UN Sustainability Development Goals to transform our world. As one step towards this goal, we present an approach that leverages remote sensing data to plan optimal water supply networks for informal urban settlements. The concept focuses on slums within large urban areas, which are often characterized by a lack of an appropriate water supply. We apply methods of mathematical optimization aiming to find a network describing the optimal supply infrastructure. Hereby, we choose between different decentral and central approaches combining supply by motorized vehicles with supply by pipe systems. For the purposes of illustration, we apply the approach to two small slum clusters in Dhaka and Dar es Salaam. We show our optimization results, which represent the lowest cost water supply systems possible. Additionally, we compare the optimal solutions of the two clusters (also for varying input parameters, such as population densities and slum size development over time) and describe how the result of the optimization depends on the entered remote sensing data.}, language = {en} } @article{RauppSchmittWalzetal.2018, author = {Raupp, Sebastian M. and Schmitt, Marcel and Walz, Anna-Lena and Diehm, Ralf and Hummel, Helga and Scharfer, Philip and Schabel, Wilhelm}, title = {Slot die stripe coating of low viscous fluids}, series = {Journal of Coatings Technology and Research}, volume = {15}, journal = {Journal of Coatings Technology and Research}, number = {5}, publisher = {Springer}, issn = {1935-3804}, doi = {10.1007/s11998-017-0039-y}, pages = {899 -- 911}, year = {2018}, abstract = {Slot die coating is applied to deposit thin and homogenous films in roll-to-roll and sheet-to-sheet applications. The critical step in operation is to choose suitable process parameters within the process window. In this work, we investigate an upper limit for stripe coatings. This maximum film thickness is characterized by stripe merging which needs to be avoided in a stable process. It is shown that the upper limit reduces the process window for stripe coatings to a major extent. As a result, stripe coatings at large coating gaps and low viscosities are only possible for relatively thick films. Explaining the upper limit, a theory of balancing the side pressure in the gap region in the cross-web direction has been developed.}, language = {en} }