@article{RiedelKartchemnikSchoeningetal.2014, author = {Riedel, Marc and Kartchemnik, Julia and Sch{\"o}ning, Michael Josef and Lisdat, Fred}, title = {Impedimetric DNA detection - steps forward to sensorial application}, series = {Analytical chemistry}, volume = {86 (2014)}, journal = {Analytical chemistry}, number = {15}, publisher = {ACS Publications}, address = {Columbus}, issn = {1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print)}, doi = {10.1021/ac501800q}, pages = {7867 -- 7874}, year = {2014}, abstract = {This study describes a label-free impedimetric sensor based on short ssDNA recognition elements for the detection of hybridization events. We concentrate on the elucidation of the influence of target length and recognition sequence position on the sensorial performance. The impedimetric measurements are performed in the presence of the redox system ferri-/ferrocyanide and show an increase in charge transfer resistance upon hybridization of ssDNA to the sensor surface. Investigations on the impedimetric signal stability demonstrate a clear influence of the buffers used during the sensor preparation and the choice of the passivating mercaptoalcanol compound. A stable sensor system has been developed, enabling a reproducible detection of 25mer target DNA in the low nanomolar range. After hybridization, a sensor regeneration can be reached with deionized water by adjustment of effective convection conditions, ensuring a sensor reusability. By investigations of longer targets with overhangs exposed to the solution, we can demonstrate applicability of the impedimetric detection for longer ssDNA. However, a decreasing charge transfer resistance change (ΔRct) is found by extending the overhang. As a strategy to increase the impedance change for longer target strands, the position of the recognition sequence can be designed in a way that a small overhang is exposed to the electrode surface. This is found to result in an increase in the relative Rct change. These results suggest that DNA and consequently negative charge near the electrode possess a larger impact on the impedimetric signal than DNA further away.}, language = {en} } @article{ReisertSchneiderGeissleretal.2013, author = {Reisert, Steffen and Schneider, Benno and Geissler, Hanno and Gompel, Matthias van and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Multi-sensor chip for the investigation of different types of metal oxides for the detection of H2O2 in the ppm range}, series = {physica status solidi (a)}, volume = {210}, journal = {physica status solidi (a)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, pages = {898 -- 904}, year = {2013}, abstract = {In this work, a multi-sensor chip for the investigation of the sensing properties of different types of metal oxides towards hydrogen peroxide in the ppm range is presented. The fabrication process and physical characterization of the multi-sensor chip are described. Pure SnO2 and WO3 as well as Pd- and Pt-doped SnO2 films are characterized in terms of their sensitivity to H2O2. The sensing films have been prepared by drop-coating of water-dispensed nano-powders. A physical characterization, including scanning electron microscopy and X-ray diffraction analysis of the deposited metal-oxide films, was done. From the measurements in hydrogen peroxide atmosphere, it could be shown, that all of the tested metal oxide films are suitable for the detection of H2O2 in the ppm range. The highest sensitivity and reproducibility was achieved using Pt-doped SnO2. Calibration plot of a SnO2, WO3, Pt-, and Pd-doped SnO2 gas sensor for H2O2 concentrations in the ppm range.}, language = {en} } @article{ReisertHenkelSchneideretal.2010, author = {Reisert, Steffen and Henkel, Hartmut and Schneider, Andreas and Sch{\"a}fer, Daniel and Friedrich, Peter and Berger, J{\"o}rg and Sch{\"o}ning, Michael Josef}, title = {Development of a handheld sensor system for the online measurement of hydrogen peroxide in aseptic filling systems}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {913 -- 918}, year = {2010}, language = {en} } @article{ReisertHenkelSchneideretal.2009, author = {Reisert, Steffen and Henkel, H. and Schneider, A. and Sch{\"a}fer, D. and Friedrich, P. and Berger, J. and Sch{\"o}ning, Michael Josef}, title = {Entwicklung eines Handheld-Sensorsystems f{\"u}r die „On-line"-Messung der H2O2-Konzentration in aseptischen Entkeimungsprozessen}, series = {9. Dresdner Sensor-Symposium : Dresden, 07.-09. Dezember 2009 / Gerlach, Gerald ; Hauptmann, Peter [Hrsg.]}, journal = {9. Dresdner Sensor-Symposium : Dresden, 07.-09. Dezember 2009 / Gerlach, Gerald ; Hauptmann, Peter [Hrsg.]}, publisher = {TUDpress}, address = {Dresden}, isbn = {978-3-941298-44-6}, pages = {285 -- 288}, year = {2009}, language = {de} } @article{ReisertGeisslerFloerkeetal.2013, author = {Reisert, Steffen and Geissler, Hanno and Fl{\"o}rke, Rudolf and Weiler, Christian and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Characterisation of aseptic sterilisation processes using an electronic nose}, series = {International journal of nanotechnology}, volume = {Vol. 10}, journal = {International journal of nanotechnology}, number = {No. 5-7}, publisher = {Inderscience Enterprises}, address = {Gen{\`e}ve}, issn = {1475-7435 (Print) 7141-8151 (Online)}, pages = {470 -- 484}, year = {2013}, language = {en} } @article{ReisertGeisslerFloerkeetal.2011, author = {Reisert, Steffen and Geissler, Hanno and Fl{\"o}rke, Rudolf and N{\"a}ther, Niko and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Towards a multi-sensor system for the evaluation of aseptic processes employing hydrogen peroxide vapour (H2O2)}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1351 -- 1356}, year = {2011}, language = {en} } @article{ReisertGeisslerWeileretal.2015, author = {Reisert, Steffen and Geissler, H. and Weiler, C. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Multiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes}, series = {Food control}, volume = {47}, journal = {Food control}, issn = {1873-7129 (E-Journal); 0956-7135 (Print)}, doi = {10.1016/j.foodcont.2014.07.063}, pages = {615 -- 622}, year = {2015}, abstract = {The present work describes a novel multiple sensor-type system for the real-time analysis of aseptic sterilisation processes employing gaseous hydrogen peroxide (H2O2) as a sterilant. The inactivation kinetics of Bacillus atrophaeus by gaseous H2O2 have been investigated by means of a methodical calibration experiment, taking into account the process variables H2O2 concentration, humidity and gas temperature. It has been found that the microbicidal effectiveness at H2O2 concentrations above 2\% v/v is largely determined by the concentration itself, while at lower H2O2 concentrations, the gas temperature and humidity play a leading role. Furthermore, the responses of different types of gas sensors towards the influencing factors of the sterilisation process have been analysed within the same experiment. Based on a correlation established between the inactivation kinetics and the sensor responses, a calorimetric H2O2 sensor and a metal-oxide semiconductor (MOX) sensor have been identified as possible candidates for monitoring the microbicidal effectiveness of aseptic sterilisation processes employing gaseous H2O2. Therefore, two linear models that describe the relationship between sensor response and microbicidal effectiveness have been proposed.}, language = {en} } @inproceedings{ReisertGeisslerFloerkeetal.2012, author = {Reisert, Steffen and Geissler, H. and Fl{\"o}rke, R. and Weiler, C. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Characterisation of aseptic sterilisation processes using an electronic nose}, series = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, booktitle = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, editor = {Abdelghani, Adnane and Sch{\"o}ning, Michael Josef}, pages = {45 -- 45}, year = {2012}, language = {en} } @article{ReisertGeisslerFlorkeetal.2011, author = {Reisert, Steffen and Geissler, H. and Florke, R. and Wagner, P. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Controlling aseptic sterilization processes by means of a multi-sensor system}, publisher = {IEEE}, address = {New York}, pages = {18 -- 22}, year = {2011}, language = {en} } @article{PoghossianYoshinobuSimonisetal.2001, author = {Poghossian, Arshak and Yoshinobu, Tatsuo and Simonis, A. and Ecken, H. and L{\"u}th, Hans and Sch{\"o}ning, Michael Josef}, title = {Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?}, series = {Sensors and Actuators B. 78 (2001), H. 1-3}, journal = {Sensors and Actuators B. 78 (2001), H. 1-3}, isbn = {0925-4005}, pages = {237 -- 242}, year = {2001}, language = {en} } @article{PoghossianYoshinobuSchoening2003, author = {Poghossian, Arshak and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Flow-velocity microsensors based on semiconductor field-effect structures}, series = {Sensors. 3 (2003), H. 7}, journal = {Sensors. 3 (2003), H. 7}, isbn = {1424-8220}, pages = {202 -- 212}, year = {2003}, language = {en} } @article{PoghossianYoshinobuSimonisetal.2000, author = {Poghossian, Arshak and Yoshinobu, T. and Simonis, A. and Ecken, H. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?}, series = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, journal = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, publisher = {MIC, Mikroelektronik Centret}, address = {Lyngby, Denmark}, isbn = {87-89935-50-0}, pages = {27 -- 30}, year = {2000}, language = {en} } @article{PoghossianWernerBuniatyanetal.2017, author = {Poghossian, Arshak and Werner, Frederik and Buniatyan, V. V. and Wagner, Torsten and Miamoto, K. and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk}, series = {Sensor and Actuators B: Chemical}, journal = {Sensor and Actuators B: Chemical}, number = {244}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.01.047}, pages = {1071 -- 1079}, year = {2017}, abstract = {The LAPS (light-addressable potentiometric sensor) platform is one of the most attractive approaches for chemical and biological sensing with many applications ranging from pH and ion/analyte concentration measurements up to cell metabolism detection and chemical imaging. However, although it is generally accepted that LAPS measurements are spatially resolved, the light-addressability feature of LAPS devices has not been discussed in detail so far. In this work, an extended electrical equivalent-circuit model of the LAPS has been presented, which takes into account possible cross-talk effects due to the capacitive coupling of the non-illuminated region. A shunting effect of the non-illuminated area on the measured photocurrent and addressability of LAPS devices has been studied. It has been shown, that the measured photocurrent will be determined not only by the local interfacial potential in the illuminated region but also by possible interfacial potential changes in the non-illuminated region, yielding cross-talk effects. These findings were supported by the experimental investigations of a penicillin-sensitive multi-spot LAPS and a metal-insulator-semiconductor LAPS as model systems.}, language = {en} } @article{PoghossianWeldenBuniatyanetal.2021, author = {Poghossian, Arshak and Welden, Rene and Buniatyan, Vahe V. and Sch{\"o}ning, Michael Josef}, title = {An Array of On-Chip Integrated, Individually Addressable Capacitive Field-Effect Sensors with Control Gate: Design and Modelling}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21186161}, pages = {17}, year = {2021}, abstract = {The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed.}, language = {en} } @incollection{PoghossianWeilandSchoening2014, author = {Poghossian, Arshak and Weiland, Maryam and Sch{\"o}ning, Michael Josef}, title = {Nanoplate field-effect capacitors: a new transducer structure for multiparameter (bio-)chemical sensing}, series = {Multisensor system for chemical analysis : materials and sensors}, booktitle = {Multisensor system for chemical analysis : materials and sensors}, editor = {Lvova, Larisa and Kirsanov, Dmitry and di Natale, Corrado and Legin, Audrey}, edition = {1}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4411-15-8 ; 978-981-4411-16-5}, doi = {10.1201/b15491-11}, pages = {333 -- 373}, year = {2014}, abstract = {An array of electrically isolated nanoplate field-effect silicon-on-insulator (SOI) capacitors as a new transducer structure for multiparameter (bio-)chemical sensing is presented. The proposed approach allows addressable biasing and electrical readout of multiple nanoplate field-effect capacitive (bio-)chemical sensors on the same SOI chip, as well as differential-mode measurements. The realized sensor chip has been applied for pH and penicillin concentration measurements, electrical monitoring of polyelectrolyte multilayer formation, and the label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization and denaturation events.}, language = {en} } @article{PoghossianWeilBaeckeretal.2012, author = {Poghossian, Arshak and Weil, M. H. and B{\"a}cker, Matthias and Mayer, D. and Sch{\"o}ning, Michael Josef}, title = {Field-effect Devices Functionalised with Gold-Nanoparticle/Macromolecule Hybrids: New Opportunities for a Label-Free Biosensing}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.136}, pages = {273 -- 276}, year = {2012}, abstract = {Field-effect capacitive electrolyte-insulator-semiconductor (EIS) sensors functionalised with citrate-capped gold nanoparticles (AuNP) have been used for the electrostatic detection of macromolecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in the AuNP/macromolecule hybrids induced by the adsorption or binding events. A feasibility of the proposed detection scheme has been exemplary demonstrated by realising EIS sensors for the detection of poly-D-lysine molecules.}, language = {en} } @article{PoghossianWeilCherstvyetal.2013, author = {Poghossian, Arshak and Weil, M. and Cherstvy, A. G. and Sch{\"o}ning, Michael Josef}, title = {Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices}, series = {Analytical and bioanalytical chemistry}, volume = {405}, journal = {Analytical and bioanalytical chemistry}, number = {20}, publisher = {Springer}, address = {Berlin}, issn = {1432-1130 ; 1618-2642}, doi = {10.1007/s00216-013-6951-9}, pages = {6425 -- 6436}, year = {2013}, abstract = {The semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance-voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed.}, language = {en} } @article{PoghossianWagnerSchoening2009, author = {Poghossian, Arshak and Wagner, Holger and Sch{\"o}ning, Michael Josef}, title = {Functional testing and characterisation of (bio-)chemical sensors on wafer level}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, isbn = {1876-6196}, pages = {835 -- 838}, year = {2009}, language = {en} } @article{PoghossianWagnerSchoening2011, author = {Poghossian, Arshak and Wagner, Holger and Sch{\"o}ning, Michael Josef}, title = {Functional testing and characterisation of (bio-)chemical sensors on wafer level}, series = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, journal = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1873-3077}, pages = {169 -- 173}, year = {2011}, language = {en} } @article{PoghossianWagnerSchoening2010, author = {Poghossian, Arshak and Wagner, H. and Sch{\"o}ning, Michael Josef}, title = {Automatisiertes „wafer level"-Testsystem zur Charakterisierung von siliziumbasierten Chemo- und Biosensoren}, series = {Sensoren und Messsysteme 2010 [Elektronische Ressource] : Vortr{\"a}ge der 15. ITG/GMA-Fachtagung vom 18. bis 19. Mai 2010 in N{\"u}rnberg / Informationstechnische Gesellschaft im VDE (ITG); VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA)}, journal = {Sensoren und Messsysteme 2010 [Elektronische Ressource] : Vortr{\"a}ge der 15. ITG/GMA-Fachtagung vom 18. bis 19. Mai 2010 in N{\"u}rnberg / Informationstechnische Gesellschaft im VDE (ITG); VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA)}, publisher = {VDE Verlag}, address = {Berlin}, isbn = {978-3-8007-3260-9}, pages = {89 -- 92}, year = {2010}, language = {de} }