@article{StreunBrandenburgKhodaverdietal.2006, author = {Streun, M. and Brandenburg, G. and Khodaverdi, M. and Larue, H. and Parl, C. and Ziemons, Karl}, title = {Timemark correction for the ClearPET™ scanners}, series = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, journal = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, isbn = {1082-3654}, pages = {2057 -- 2060}, year = {2006}, abstract = {The small animal PET scanners developed by the Crystal Clear Collaboration (ClearPETtrade) detect coincidences by analyzing timemarks which are attached to each event. The scanners are able to save complete single list mode data which allows analysis and modification of the timemarks after data acquisition. The timemarks are obtained from the digitally sampled detector pulses by calculating the baseline crossing of the rising edge of the pulse which is approximated as a straight line. But the limited sampling frequency causes a systematic error in the determination of the timemark. This error depends on the phase of the sampling clock at the time of the event. A statistical method that corrects these errors will be presented}, language = {en} } @article{StreunBrandenburgBroekeletal.2004, author = {Streun, M. and Brandenburg, G. and Br{\"o}kel, M. and Fuss, L. and Larue, H. and Parl, C. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {The ClearPET data acquisition}, series = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5}, journal = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5}, issn = {1082-3654}, pages = {3097 -- 3100}, year = {2004}, abstract = {Within the Crystal Clear Collaboration a modular system for a small animal PET scanner (ClearPET™) has been developed. The modularity allows the assembly of scanners of different sizes and characteristics in order to fit the specific needs of the individual member institutions. Now a first demonstrator is being completed in Julich. The system performs depth of interaction detection by using a phoswich arrangement combining LSO and LuYAP scintillators which are coupled to multi-channel photomultipliers (PMTs). A free-running ADC digitizes the signal from the PMT and the complete scintillation pulses are sampled by an FPGA and sent with 20 MB/S to a PC for preprocessing. The pulse provides information about the gamma energy and the scintillator material which identifies the interaction layer. Furthermore, the exact pulse starting time is obtained from the sampled data. This is important as no hardware coincidence detection is implemented. All single events are recorded and coincidences are identified by software. An advantage of that is that the coincidence window and the dimensions of the field of view can be adjusted easily. The ClearPET™ demonstrator is equipped with 10240 crystals on 80 PMTs. This paper presents an overview of the data acquisition system.}, language = {en} } @article{StreunBeerHombachetal.2008, author = {Streun, M. and Beer, S. and Hombach, T. and Jahnke, S. and Khodaverdi, M. and Larue, H. and Minwuyelet, S. and Parl, C. and Roeb, G. and Schurr, U. and Ziemons, Karl}, title = {PlanTIS: A positron emission tomograph for imaging 11C transport in plants}, series = {2007 IEEE Nuclear Science Symposium Conference Record, Vol. 6}, journal = {2007 IEEE Nuclear Science Symposium Conference Record, Vol. 6}, isbn = {1082-3654}, pages = {4110 -- 4112}, year = {2008}, abstract = {Plant growth and transport processes are highly dynamic. They are characterized by plant-internal control processes and by strong interactions with the spatially and temporally varying environment. Analysis of structure- function relations of growth and transport in plants will strongly benefit from the development of non-invasive techniques. PlanTIS (Plant Tomographic Imaging System) is designed for non-destructive 3D-imaging of positron emitting radiotracers. It will permit functional analysis of the dynamics of carbon distribution in plants including bulky organs. It will be applicable for screening transport properties of plants to evaluate e.g. temperature adaptation of genetically modified plants. PlanTIS is a PET scanner dedicated to monitor the dynamics of the 11C distribution within a plant while or after assimilation of 11CO2. Front end electronics and data acquisition architecture of the scanner are based on the ClearPETTM system [1]. Four detector modules form one of two opposing detector blocks. Optionally, a hardware coincidence detection between the blocks can be applied. In general the scan duration is rather long (~ 1 hour) compared to the decay time of 11C (20 min). As a result the count rates can vary over a wide range and accurate dead time correction is necessary.}, language = {en} } @inproceedings{StreunAlKaddoumParletal.2012, author = {Streun, M. and Al-Kaddoum, R. and Parl, C. and Pietrzyk, U. and Ziemons, Karl and Waasen, S. van}, title = {Simulation studies of optical photons in monolithic block scintillators}, series = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, booktitle = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4673-0120-6 (electronic ISBN)}, doi = {10.1109/NSSMIC.2011.6154621}, pages = {1380 -- 1382}, year = {2012}, abstract = {The interest in PET detectors with monolithic block scintillators is growing. In order to obtain high spatial resolutions dedicated positioning algorithms are required. But even an ideal algorithm can only deliver information which is provided by the detector. In this simulation study we investigated the light distribution on one surface of cuboid LSO scintillators of different size. Scintillators with a large aspect ratio (small footprint and large height) showed significant position information only for a minimum interaction depth of the gamma particle. The results allow a quantitative estimate for a useful aspect ratio.}, language = {en} } @article{SchmidtLangenHerzogetal.1997, author = {Schmidt, Daniela and Langen, Karl-J. and Herzog, Hans and Wirths, Jochen and Holschbach, Markus and Kiwit, J{\"u}rgen C. W. and Ziemons, Karl and Coenen, Heinz-H. and M{\"u}ller-G{\"a}rtner, Hans-W.}, title = {Whole-body kinetics and dosimetry of L-3[123I]-iodo-α-methyltyrosine}, series = {European Journal of Nuclear Medicine}, volume = {24}, journal = {European Journal of Nuclear Medicine}, number = {9}, isbn = {1619-7089}, pages = {1162 -- 1166}, year = {1997}, language = {en} } @misc{RongenZiemonsSchieketal.2006, author = {Rongen, Heinz and Ziemons, Karl and Schiek, Michael and Tass, Alexander}, title = {Vorrichtung zur Messung biomedizinischer Daten eines Probanden und Verfahren zur Simulation des Probanden mit in Echtzeit verarbeiteten Daten}, pages = {1 -- 12}, year = {2006}, abstract = {Die Erfindung betrifft eine Vorrichtung zur Messung biomedizinischer Daten eines Probanden, mit einem Messsystem zur Erhebung der Daten sowie einer ersten Hardware-Komponente zur Aufzeichnung der Daten. In einer Verbindungsleitung zur {\"U}bertragung der Daten vom Messsystem zur ersten Hardware-Komponente zur Aufzeichnung der Daten ist erfindungsgem{\"a}ss ein Mittel zur galvanischen Auftrennung der Daten angeordnet. Auf diese Weise ist wenigstens die Duplizierung der Daten f{\"u}r Datenverarbeitungszwecke gew{\"a}hrleistet. Die auf diese Weise verarbeiteten Daten werden f{\"u}r ein Verfahren zur Echtzeit-Stimulation eines Probanden genutzt.}, language = {de} } @article{PhilippEfthimiouPaganoetal.2022, author = {Philipp, Mohr and Efthimiou, Nikos and Pagano, Fiammetta and Kratochwil, Nicolaus and Pizzichemi, Marco and Tsoumpas, Charalampos and Auffray, Etiennette and Ziemons, Karl}, title = {Image reconstruction analysis for positron emission tomography with heterostructured scintillators}, series = {IEEE Transactions on Radiation and Plasma Medical Sciences}, volume = {7}, journal = {IEEE Transactions on Radiation and Plasma Medical Sciences}, number = {1}, publisher = {IEEE}, address = {New York, NY}, issn = {2469-7311}, doi = {10.1109/TRPMS.2022.3208615}, pages = {41 -- 51}, year = {2022}, abstract = {The concept of structure engineering has been proposed for exploring the next generation of radiation detectors with improved performance. A TOF-PET geometry with heterostructured scintillators with a pixel size of 3.0×3.1×15 mm3 was simulated using Monte Carlo. The heterostructures consisted of alternating layers of BGO as a dense material with high stopping power and plastic (EJ232) as a fast light emitter. The detector time resolution was calculated as a function of the deposited and shared energy in both materials on an event-by-event basis. While sensitivity was reduced to 32\% for 100 μm thick plastic layers and 52\% for 50 μm, the CTR distribution improved to 204±49 ps and 220±41 ps respectively, compared to 276 ps that we considered for bulk BGO. The complex distribution of timing resolutions was accounted for in the reconstruction. We divided the events into three groups based on their CTR and modeled them with different Gaussian TOF kernels. On a NEMA IQ phantom, the heterostructures had better contrast recovery in early iterations. On the other hand, BGO achieved a better contrast to noise ratio (CNR) after the 15th iteration due to the higher sensitivity. The developed simulation and reconstruction methods constitute new tools for evaluating different detector designs with complex time responses.}, language = {en} } @inproceedings{PetersZiemonsDammersetal.2001, author = {Peters, H. and Ziemons, Karl and Dammers, J. and M{\"u}ller-Veggian, Mattea}, title = {Continuous head motion detection during MEG measurement using head location coils}, series = {Proceedings of the 12th International Conference on Biomagnetism : August 13 - 17, 2000, Helsinki University of Technology, Espoo, Finland}, booktitle = {Proceedings of the 12th International Conference on Biomagnetism : August 13 - 17, 2000, Helsinki University of Technology, Espoo, Finland}, editor = {Nenonen, Jukka}, publisher = {Helsinki Univ. of Technology, Laboratory of Biomedical Engineering}, address = {Espoo}, isbn = {951-22-5401-8}, pages = {XX, 1060 S. : Ill., graph. Darst.}, year = {2001}, language = {en} } @article{ParlLarueStreunetal.2011, author = {Parl, C. and Larue, H. and Streun, M. and Ziemons, Karl}, title = {Double-side-readout technique for SiPM-matrices}, series = {2010 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, journal = {2010 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, publisher = {IEEE}, address = {New York}, issn = {1095-7863}, pages = {1486 -- 1487}, year = {2011}, abstract = {In our case the double-side-method is used to minimize the complexity of a matrix-readout. Here the number of channels is reduced to 2√N̅. It is also possible to benefit from the method in a single pixel readout system. One signal can be used to measure position and energy of the event, the other one can be applied to a fast trigger-circuit at the same time. In a next step we will investigate timing behavior and electrical crosstalk of the circuit.}, language = {en} } @inproceedings{OlderogMohrBegingetal.2021, author = {Olderog, M. and Mohr, P. and Beging, Stefan and Tsoumpas, C. and Ziemons, Karl}, title = {Simulation study on the role of tissue-scattered events in improving sensitivity for a compact time of flight compton positron emission tomograph}, series = {2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)}, booktitle = {2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)}, publisher = {IEEE}, isbn = {978-1-7281-7693-2}, doi = {10.1109/NSS/MIC42677.2020.9507901}, pages = {4 Seiten}, year = {2021}, abstract = {In positron emission tomography improving time, energy and spatial detector resolutions and using Compton kinematics introduces the possibility to reconstruct a radioactivity distribution image from scatter coincidences, thereby enhancing image quality. The number of single scattered coincidences alone is in the same order of magnitude as true coincidences. In this work, a compact Compton camera module based on monolithic scintillation material is investigated as a detector ring module. The detector interactions are simulated with Monte Carlo package GATE. The scattering angle inside the tissue is derived from the energy of the scattered photon, which results in a set of possible scattering trajectories or broken line of response. The Compton kinematics collimation reduces the number of solutions. Additionally, the time of flight information helps localize the position of the annihilation. One of the questions of this investigation is related to how the energy, spatial and temporal resolutions help confine the possible annihilation volume. A comparison of currently technically feasible detector resolutions (under laboratory conditions) demonstrates the influence on this annihilation volume and shows that energy and coincidence time resolution have a significant impact. An enhancement of the latter from 400 ps to 100 ps leads to a smaller annihilation volume of around 50\%, while a change of the energy resolution in the absorber layer from 12\% to 4.5\% results in a reduction of 60\%. The inclusion of single tissue-scattered data has the potential to increase the sensitivity of a scanner by a factor of 2 to 3 times. The concept can be further optimized and extended for multiple scatter coincidences and subsequently validated by a reconstruction algorithm.}, language = {en} } @article{MossetDevroedeKriegueretal.2006, author = {Mosset, J.-B. and Devroede, O. and Krieguer, M. and Rey, M. and Vieira, J.-M. and Jung, J. H. and Kuntner, C. and Streun, M. and Ziemons, Karl and Auffray, E. and Sempere-Roldan, P. and Lecoq, P. and Bruyndonckx, P. and Loude, J.-F. and Tavernier, S. and Morcel, C.}, title = {Development of an optimized LSO/LuYAP phoswich detector head for the Lausanne ClearPET demonstrator}, series = {IEEE Transactions on Nuclear Science}, volume = {53}, journal = {IEEE Transactions on Nuclear Science}, number = {1}, isbn = {0018-9499}, pages = {25 -- 29}, year = {2006}, abstract = {This paper describes the LSO/LuYAP phoswich detector head developed for the ClearPET small animal PET scanner demonstrator that is under construction in Lausanne within the Crystal Clear Collaboration. The detector head consists of a dual layer of 8×8 LSO and LuYAP crystal arrays coupled to a multi-anode photomultiplier tube (Hamamatsu R7600-M64). Equalistion of the LSO/LuYAP light collection is obtained through partial attenuation of the LSO scintillation light using a thin aluminum deposit of 20-35 nm on LSO and appropriate temperature regulation of the phoswich head between 30°C to 60°C. At 511keV, typical FWHM energy resolutions of the pixels of a phoswich head amounts to (28±2)\% for LSO and (25±2)\% for LuYAP. The LSO versus LuYAP crystal identification efficiency is better than 98\%. Six detector modules have been mounted on a rotating gantry. Axial and tangential spatial resolutions were measured up to 4 cm from the scanner axis and compared to Monte Carlo simulations using GATE. FWHM spatial resolution ranges from 1.3 mm on axis to 2.6 mm at 4 cm from the axis.}, language = {en} } @article{LangenZiemonsKiwitetal.1997, author = {Langen, Karl J. and Ziemons, Karl and Kiwit, J{\"u}rgen C. W. and Herzog, Hans and Kuwert, Torsten and Bock, Wolfgang and St{\"o}cklin, Gerhard and Feinendegen, Ludwig E. and M{\"u}ller-G{\"a}rtner, Hans-W.}, title = {3-[123I]iodo-α-methyltyrosine and [methyl-11C]-L-methionine uptake in cerebral gliomas: a compara-tive study using SPECT and PET}, series = {Journal of Nuclear Medicine}, volume = {38}, journal = {Journal of Nuclear Medicine}, number = {4}, isbn = {0161-5505}, pages = {517 -- 522}, year = {1997}, language = {en} } @article{KleinesZiemonsZwoll1998, author = {Kleines, H. and Ziemons, Karl and Zwoll, K.}, title = {Experiences with ATM in a multivendor pilot system at Forschungszentrum J{\"u}lich}, series = {IEEE Transactions on Nuclear Science}, volume = {45}, journal = {IEEE Transactions on Nuclear Science}, number = {4}, issn = {0018-9499}, pages = {1867 -- 1871}, year = {1998}, abstract = {The ATM technology for high speed serial transmission provides a new quality of communication by introducing novel features in a LAN environment, especially support of real time communication, of both LAN and WAN communication and of multimedia streams. In order to evaluate ATM for future DAQ systems and remote control systems as well as for a high speed picture archiving and communications system for medical images, Forschungszentrum Julich has build up a pilot system for the evaluation of ATM and standard low cost multimedia systems. It is a heterogeneous multivendor system containing a variety of switches and desktop solutions, employing different protocol options of ATM. The tests conducted in the pilot system revealed major difficulties regarding stability, interoperability and performance. The paper presents motivations, layout and results of the pilot system. Discussion of results concentrates on performance issues relevant for realistic applications, e.g., connection to a RAID system via NFS over ATM}, language = {en} } @article{KleinesErkiZiemonsetal.1997, author = {Kleines, H. and Erki, I. and Ziemons, Karl and Zwoll, K.}, title = {ATM- und Multimedia Pilotsystem im Rahmen des Projektes M-FIBRe Aufbau und Erfahrungen}, series = {Bildverarbeitung f{\"u}r die Medizin : Algorithmen - Systeme - Anwendungen}, journal = {Bildverarbeitung f{\"u}r die Medizin : Algorithmen - Systeme - Anwendungen}, editor = {Lehmann, Thomas}, publisher = {Verl. der. Augustinus-Buchh.}, address = {Aachen}, isbn = {3-86073-519-5}, pages = {241 -- 248}, year = {1997}, language = {de} } @article{KhodaverdiWeberStreunetal.2006, author = {Khodaverdi, M. and Weber, S. and Streun, M. and Parl, C. and Ziemons, Karl}, title = {High resolution imaging with ClearPET™ Neuro - first animal images}, series = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, isbn = {1082-3654}, pages = {1641 -- 1644}, year = {2006}, abstract = {The ClearPET™ Neuro is the first full ring scanner within the Crystal Clear Collaboration (CCC). It consists of 80 detector modules allocated to 20 cassettes. LSO and LuYAP:Ce crystals in phoswich configuration in combination with position sensitive photomultiplier tubes are used to achieve high sensitivity and realize the acquisition of the depth of interaction (DOI) information. The complete system has been tested concerning the mechanical and electronical stability and interplay. Moreover, suitable corrections have been implemented into the reconstruction procedure to ensure high image quality. We present first results which show the successful operation of the ClearPET™ Neuro for artefact free and high resolution small animal imaging. Based on these results during the past few months the ClearPET™ Neuro System has been modified in order to optimize the performance.}, language = {en} } @article{KhodaverdiPaulySchroderetal.2002, author = {Khodaverdi, M. and Pauly, F. and Schroder, G. and Ziemons, Karl and Sievering, R. and Halling, H.}, title = {Preliminary studies of a micro-CT for a combined small animal PET/CT scanner}, series = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, issn = {1082-3654}, pages = {1605 -- 1606}, year = {2002}, abstract = {We are developing an X-ray computed tomography (CT) system which will be combined with a high resolution animal PET system. This permits acquisition of both molecular and anatomical images in a single machine. In particular the CT will also be utilized for the quantification of the animal PET data by providing accurate data for attenuation correction. A first prototype has been built using a commercially available plane silicon diode detector. A cone-beam reconstruction provides the images using the Feldkamp algorithm. First measurements with this system have been performed on a mouse. It could be shown that the CT setup fulfils all demands for a high quality image of the skeleton of the mouse. It is also suited for soft tissue measurements. To improve contrast and resolution and to acquire the X-ray energy further development of the system, especially the use of semiconductor detectors and iterative reconstruction algorithms are planned.}, language = {en} } @article{KhodaverdiChaziioannouWeberetal.2004, author = {Khodaverdi, M. and Chaziioannou, A. F. and Weber, S. and Ziemons, Karl and Halling, H. and Pietrzyk, U.}, title = {Investigation of different microCT scanner configurations by GEANT4 simulations}, series = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, journal = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, issn = {1082-3654}, pages = {2989 -- 2993}, year = {2004}, abstract = {This study has been performed to design the combination of the new ClearPET TM (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal Positron Emission Tomography (PET) system, with a microComputed Tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material.}, language = {en} } @article{KhodaverdiChatziioannouWeberetal.2005, author = {Khodaverdi, M. and Chatziioannou, A. F. and Weber, S. and Ziemons, Karl and Halling, H. and Pietrzyk, U.}, title = {Investigation of different MicroCT scanner configurations by GEANT4 simulations}, series = {IEEE Transactions on Nuclear Science}, volume = {52}, journal = {IEEE Transactions on Nuclear Science}, number = {1}, isbn = {0018-9499}, pages = {188 -- 192}, year = {2005}, abstract = {This study has been performed to design the combination of the new ClearPET (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal positron emission tomography (PET) system, with a micro-computed tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We will demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material.}, language = {en} } @article{JahnkeMenzelDusschotenetal.2009, author = {Jahnke, Siegfried and Menzel, Marion I. and Dusschoten, Dagmar van and Roeb, Gerhard W. and B{\"u}hler, Jonas and Minwuyelet, Senay and Bl{\"u}mler, Peter and Temperton, Vicky M. and Hombach, Thomas and Streun, Matthias and Beer, Simone and Khodaverdi, Maryam and Ziemons, Karl and Coenen, Heinz H. and Schurr, Ulrich}, title = {Combined MRI-PET dissects dynamic changes in plant structures and functions}, series = {The Plant Journal}, volume = {59}, journal = {The Plant Journal}, number = {4}, publisher = {Wiley}, address = {Weinheim}, isbn = {1365-313X}, pages = {634 -- 644}, year = {2009}, abstract = {Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope 11C. Storage organs of sugar beet (Beta vulgaris) and radish plants (Raphanus sativus) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants (Zea mays), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI-PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance.}, language = {en} } @article{HerzogPietrzykShahetal.2010, author = {Herzog, Hans and Pietrzyk, Uwe and Shah, N. Jon and Ziemons, Karl}, title = {The current state, challenges and perspectives of MR-PET}, series = {Neuroimage}, volume = {49}, journal = {Neuroimage}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2009.10.036}, pages = {2072 -- 2082}, year = {2010}, abstract = {Following the success of PET/CT during the last decade and the recent increasing proliferation of SPECT/CT, another hybrid imaging instrument has been gaining more and more interest: MR-PET. First combined, simultaneous PET and MR studies carried out in small animals demonstrated the feasibility of the new approach. Concurrently, some prototypes of an MR-PET scanner for simultaneous human brain studies have been built, their performance is being tested and preliminary applications have already been shown. Through this pioneering work, it has become clear that advances in the detector design are necessary for further optimization. Recently, the different issues related to the present state and future prospects of MR-PET were presented and discussed during an international 2-day workshop at the Forschungszentrum J{\"u}lich, Germany, held after, and in conjunction with, the 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference in Dresden, Germany on October 27-28, 2008. The topics ranged from small animal MR-PET imaging to human MR-BrainPET imaging, new detector developments, challenges/opportunities for ultra-high field MR-PET imaging and considerations of possible future research and clinical applications. This report presents a critical summary of the contributions made to the workshop.}, language = {en} }