@article{MossetDevroedeKriegueretal.2006, author = {Mosset, J.-B. and Devroede, O. and Krieguer, M. and Rey, M. and Vieira, J.-M. and Jung, J. H. and Kuntner, C. and Streun, M. and Ziemons, Karl and Auffray, E. and Sempere-Roldan, P. and Lecoq, P. and Bruyndonckx, P. and Loude, J.-F. and Tavernier, S. and Morcel, C.}, title = {Development of an optimized LSO/LuYAP phoswich detector head for the Lausanne ClearPET demonstrator}, series = {IEEE Transactions on Nuclear Science}, volume = {53}, journal = {IEEE Transactions on Nuclear Science}, number = {1}, isbn = {0018-9499}, pages = {25 -- 29}, year = {2006}, abstract = {This paper describes the LSO/LuYAP phoswich detector head developed for the ClearPET small animal PET scanner demonstrator that is under construction in Lausanne within the Crystal Clear Collaboration. The detector head consists of a dual layer of 8×8 LSO and LuYAP crystal arrays coupled to a multi-anode photomultiplier tube (Hamamatsu R7600-M64). Equalistion of the LSO/LuYAP light collection is obtained through partial attenuation of the LSO scintillation light using a thin aluminum deposit of 20-35 nm on LSO and appropriate temperature regulation of the phoswich head between 30°C to 60°C. At 511keV, typical FWHM energy resolutions of the pixels of a phoswich head amounts to (28±2)\% for LSO and (25±2)\% for LuYAP. The LSO versus LuYAP crystal identification efficiency is better than 98\%. Six detector modules have been mounted on a rotating gantry. Axial and tangential spatial resolutions were measured up to 4 cm from the scanner axis and compared to Monte Carlo simulations using GATE. FWHM spatial resolution ranges from 1.3 mm on axis to 2.6 mm at 4 cm from the axis.}, language = {en} } @article{LangenZiemonsKiwitetal.1997, author = {Langen, Karl J. and Ziemons, Karl and Kiwit, J{\"u}rgen C. W. and Herzog, Hans and Kuwert, Torsten and Bock, Wolfgang and St{\"o}cklin, Gerhard and Feinendegen, Ludwig E. and M{\"u}ller-G{\"a}rtner, Hans-W.}, title = {3-[123I]iodo-α-methyltyrosine and [methyl-11C]-L-methionine uptake in cerebral gliomas: a compara-tive study using SPECT and PET}, series = {Journal of Nuclear Medicine}, volume = {38}, journal = {Journal of Nuclear Medicine}, number = {4}, isbn = {0161-5505}, pages = {517 -- 522}, year = {1997}, language = {en} } @article{KleinesZiemonsZwoll1998, author = {Kleines, H. and Ziemons, Karl and Zwoll, K.}, title = {Experiences with ATM in a multivendor pilot system at Forschungszentrum J{\"u}lich}, series = {IEEE Transactions on Nuclear Science}, volume = {45}, journal = {IEEE Transactions on Nuclear Science}, number = {4}, issn = {0018-9499}, pages = {1867 -- 1871}, year = {1998}, abstract = {The ATM technology for high speed serial transmission provides a new quality of communication by introducing novel features in a LAN environment, especially support of real time communication, of both LAN and WAN communication and of multimedia streams. In order to evaluate ATM for future DAQ systems and remote control systems as well as for a high speed picture archiving and communications system for medical images, Forschungszentrum Julich has build up a pilot system for the evaluation of ATM and standard low cost multimedia systems. It is a heterogeneous multivendor system containing a variety of switches and desktop solutions, employing different protocol options of ATM. The tests conducted in the pilot system revealed major difficulties regarding stability, interoperability and performance. The paper presents motivations, layout and results of the pilot system. Discussion of results concentrates on performance issues relevant for realistic applications, e.g., connection to a RAID system via NFS over ATM}, language = {en} } @article{KleinesErkiZiemonsetal.1997, author = {Kleines, H. and Erki, I. and Ziemons, Karl and Zwoll, K.}, title = {ATM- und Multimedia Pilotsystem im Rahmen des Projektes M-FIBRe Aufbau und Erfahrungen}, series = {Bildverarbeitung f{\"u}r die Medizin : Algorithmen - Systeme - Anwendungen}, journal = {Bildverarbeitung f{\"u}r die Medizin : Algorithmen - Systeme - Anwendungen}, editor = {Lehmann, Thomas}, publisher = {Verl. der. Augustinus-Buchh.}, address = {Aachen}, isbn = {3-86073-519-5}, pages = {241 -- 248}, year = {1997}, language = {de} } @article{KhodaverdiWeberStreunetal.2006, author = {Khodaverdi, M. and Weber, S. and Streun, M. and Parl, C. and Ziemons, Karl}, title = {High resolution imaging with ClearPET™ Neuro - first animal images}, series = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2005 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, isbn = {1082-3654}, pages = {1641 -- 1644}, year = {2006}, abstract = {The ClearPET™ Neuro is the first full ring scanner within the Crystal Clear Collaboration (CCC). It consists of 80 detector modules allocated to 20 cassettes. LSO and LuYAP:Ce crystals in phoswich configuration in combination with position sensitive photomultiplier tubes are used to achieve high sensitivity and realize the acquisition of the depth of interaction (DOI) information. The complete system has been tested concerning the mechanical and electronical stability and interplay. Moreover, suitable corrections have been implemented into the reconstruction procedure to ensure high image quality. We present first results which show the successful operation of the ClearPET™ Neuro for artefact free and high resolution small animal imaging. Based on these results during the past few months the ClearPET™ Neuro System has been modified in order to optimize the performance.}, language = {en} } @article{KhodaverdiPaulySchroderetal.2002, author = {Khodaverdi, M. and Pauly, F. and Schroder, G. and Ziemons, Karl and Sievering, R. and Halling, H.}, title = {Preliminary studies of a micro-CT for a combined small animal PET/CT scanner}, series = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, issn = {1082-3654}, pages = {1605 -- 1606}, year = {2002}, abstract = {We are developing an X-ray computed tomography (CT) system which will be combined with a high resolution animal PET system. This permits acquisition of both molecular and anatomical images in a single machine. In particular the CT will also be utilized for the quantification of the animal PET data by providing accurate data for attenuation correction. A first prototype has been built using a commercially available plane silicon diode detector. A cone-beam reconstruction provides the images using the Feldkamp algorithm. First measurements with this system have been performed on a mouse. It could be shown that the CT setup fulfils all demands for a high quality image of the skeleton of the mouse. It is also suited for soft tissue measurements. To improve contrast and resolution and to acquire the X-ray energy further development of the system, especially the use of semiconductor detectors and iterative reconstruction algorithms are planned.}, language = {en} } @article{KhodaverdiChaziioannouWeberetal.2004, author = {Khodaverdi, M. and Chaziioannou, A. F. and Weber, S. and Ziemons, Karl and Halling, H. and Pietrzyk, U.}, title = {Investigation of different microCT scanner configurations by GEANT4 simulations}, series = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, journal = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, issn = {1082-3654}, pages = {2989 -- 2993}, year = {2004}, abstract = {This study has been performed to design the combination of the new ClearPET TM (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal Positron Emission Tomography (PET) system, with a microComputed Tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material.}, language = {en} } @article{KhodaverdiChatziioannouWeberetal.2005, author = {Khodaverdi, M. and Chatziioannou, A. F. and Weber, S. and Ziemons, Karl and Halling, H. and Pietrzyk, U.}, title = {Investigation of different MicroCT scanner configurations by GEANT4 simulations}, series = {IEEE Transactions on Nuclear Science}, volume = {52}, journal = {IEEE Transactions on Nuclear Science}, number = {1}, isbn = {0018-9499}, pages = {188 -- 192}, year = {2005}, abstract = {This study has been performed to design the combination of the new ClearPET (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal positron emission tomography (PET) system, with a micro-computed tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We will demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material.}, language = {en} } @article{JahnkeMenzelDusschotenetal.2009, author = {Jahnke, Siegfried and Menzel, Marion I. and Dusschoten, Dagmar van and Roeb, Gerhard W. and B{\"u}hler, Jonas and Minwuyelet, Senay and Bl{\"u}mler, Peter and Temperton, Vicky M. and Hombach, Thomas and Streun, Matthias and Beer, Simone and Khodaverdi, Maryam and Ziemons, Karl and Coenen, Heinz H. and Schurr, Ulrich}, title = {Combined MRI-PET dissects dynamic changes in plant structures and functions}, series = {The Plant Journal}, volume = {59}, journal = {The Plant Journal}, number = {4}, publisher = {Wiley}, address = {Weinheim}, isbn = {1365-313X}, pages = {634 -- 644}, year = {2009}, abstract = {Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope 11C. Storage organs of sugar beet (Beta vulgaris) and radish plants (Raphanus sativus) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants (Zea mays), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI-PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance.}, language = {en} } @article{HerzogPietrzykShahetal.2010, author = {Herzog, Hans and Pietrzyk, Uwe and Shah, N. Jon and Ziemons, Karl}, title = {The current state, challenges and perspectives of MR-PET}, series = {Neuroimage}, volume = {49}, journal = {Neuroimage}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2009.10.036}, pages = {2072 -- 2082}, year = {2010}, abstract = {Following the success of PET/CT during the last decade and the recent increasing proliferation of SPECT/CT, another hybrid imaging instrument has been gaining more and more interest: MR-PET. First combined, simultaneous PET and MR studies carried out in small animals demonstrated the feasibility of the new approach. Concurrently, some prototypes of an MR-PET scanner for simultaneous human brain studies have been built, their performance is being tested and preliminary applications have already been shown. Through this pioneering work, it has become clear that advances in the detector design are necessary for further optimization. Recently, the different issues related to the present state and future prospects of MR-PET were presented and discussed during an international 2-day workshop at the Forschungszentrum J{\"u}lich, Germany, held after, and in conjunction with, the 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference in Dresden, Germany on October 27-28, 2008. The topics ranged from small animal MR-PET imaging to human MR-BrainPET imaging, new detector developments, challenges/opportunities for ultra-high field MR-PET imaging and considerations of possible future research and clinical applications. This report presents a critical summary of the contributions made to the workshop.}, language = {en} } @article{HeinrichsPietrzykZiemons2003, author = {Heinrichs, U. and Pietrzyk, U. and Ziemons, Karl}, title = {Design optimization of the PMT-ClearPET prototypes based on simulation studies with GEANT3}, series = {2002 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2002 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, issn = {1082-3654}, pages = {682 -- 686}, year = {2003}, abstract = {Within the Crystal Clear Collaboration four centres are developing 2nd generation high performance small animal PET scanners for different kinds of animals and medical applications. The first prototypes are PMT-based systems including depth of interaction (DOI) detection by using a phoswich layer of LSO and LuYAP. The aim of these simulation studies is to optimize sensitivity and spatial resolution of given designs, which vary in FOVs caused by different detector configurations (ring/octagon) and sizes. For this purpose the simulation tool GEANT3 (CERN) was used. The simulations have shown that all PMT designs with one-to-one coupling of crystals have a very nonlinear axial sensitivity profile. By shifting every other PMT 1/4 of a PMT length in axial direction the sampling of the FOVs became more homogeneous. At an energy threshold of 350keV the regression coefficient increases from 0.818 for the non-shifted to 0.993 for the shifted design. Simulations of a point source centred in the FOV (threshold: 350keV) resulted in sensitivities of 4.2\% for a 4×20PMT (LSO/LuYAP a 10mm) and 3.8\% for a 4×16PMT (LSO/LuYAP a 8mm) ring design. The 3D-MLEM reconstruction of a point source shows the enormous improvement of resolution using a crystal double layer with DOI (3.1mm at 40mm from CFOV) instead of a 20mm single layer (11.9mm).}, language = {en} } @article{HeinrichsPietrzykZiemons2003, author = {Heinrichs, U. and Pietrzyk, U. and Ziemons, Karl}, title = {Design optimization of the PMT-ClearPET prototypes based on simulation studies with GEANT3}, series = {IEEE Transactions on Nuclear Science}, volume = {50}, journal = {IEEE Transactions on Nuclear Science}, number = {5}, isbn = {0018-9499}, pages = {1428 -- 1432}, year = {2003}, abstract = {Within the Crystal Clear Collaboration (CCC), four centers are developing second generation high performance small animal positron emission tomography (PET) scanners for different kinds of animals and medical applications. The first prototypes are photomultiplier tube (PMT)-based systems including depth of interaction (DOI) detection by using a phoswich layer of lutetium oxyorthosilicate (LSO) and lutetium yttrium aluminum perovskite (LuYAP). The aim of these simulation studies is to optimize sensitivity and spatial resolution of given designs, which vary in fields of view (FOVs) caused by different detector configurations (ring/octagon) and sizes. For this purpose the simulation tool GEANT3 (CERN, Geneva, Switzerland) was used.}, language = {en} } @article{HeinrichBlumBussmannetal.2002, author = {Heinrich, U. and Blum, A. and Bussmann, N. and Engels, R. and Kemmerling, G. and Weber, S. and Ziemons, Karl}, title = {Statistical studies on the light output and energy resolution of small LSO single crystals with different surface treatments combined with various reflector materials}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {486}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {1-2}, issn = {0168-9002}, pages = {60 -- 66}, year = {2002}, abstract = {The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2×2×10 mm3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO4) and exposed to a 22Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551±35\% by mechanical polishing the surface compared to 100±5\% for raw crystals. Etching the surface increased the light output to 441±29\%. The untreated crystals had an energy resolution of 24.6±4.0\%. By mechanical polishing the surface it was possible to achieve an energy resolution of 13.2±0.8\%, by etching of 14.8±0.7\%. In combination with BaSO4 as reflector material the maximum increase of light output has been established to 932±57\% for mechanically polished and 895±61\% for etched crystals. The combination with BaSO4 also caused the best improvement of the energy resolution up to 11.6±0.2\% for mechanically polished and 12.2±0.3\% for etched crystals. Relating to the light output there was no significant statistical difference between the two surface treatments in combination with BaSO4. In contrast to this, the statistical results of the energy resolution have shown the combination of mechanical polishing and BaSO4 as the optimum.}, language = {en} } @article{HautzelTaylorKrauseetal.2001, author = {Hautzel, H. and Taylor, J. G. and Krause, B. J. and Schmitz, N. and Tellmann, L. and Ziemons, Karl and Shah, N. J. and Herzog, H. and M{\"u}ller-G{\"a}rtner, H.-W.}, title = {The motion aftereffect: more than area V5/MT? Evidence from 15O-butanol PET studies}, series = {Brain Research}, volume = {892}, journal = {Brain Research}, number = {2}, isbn = {0006-8993}, pages = {281 -- 292}, year = {2001}, abstract = {The motion aftereffect is a perceptual phenomenon which has been extensively investigated both psychologically and physiologically. Neuroimaging techniques have recently demonstrated that area V5/MT is activated during the perception of this illusion. The aim of this study was to test the hypothesis if a more broadly distributed network of brain regions subserves the motion aftereffect. To identify the neuronal structures involved in the perception of the motion aftereffect, regional cerebral blood flow (rCBF) measurements with positron emission tomography were performed in six normal volunteers. Data were analysed using SPM96. The motion-sensitive visual areas including area V5/MT were activated in both hemispheres. Additionally, the lateral parietal cortex bilaterally, the right dorsolateral prefrontal cortex, the anterior cingulate cortex and the left cerebellum showed significant increases in rCBF values during the experience of the waterfall illusion. In a further reference condition with identical attentional demand but no perception of a motion aftereffect elevated rCBF were found in these regions as well. In conclusion, our findings support the notion that the perceptual illusion of motion arises exclusively in the motion-sensitive visual area V5/MT. In addition, a more widespread network of brain regions including the prefrontal and parietal cortex is activated during the waterfall illusion which represents a non-motion aftereffect-specific subset of brain areas but is involved in more basic attentional processing and cognition.}, language = {de} } @article{GriessmeierSonnenbergWeckesseretal.1996, author = {Grießmeier, M. and Sonnenberg, F. and Weckesser, M. and Ziemons, Karl and Langen, K.-J. and M{\"u}ller-G{\"a}rtner, H. W.}, title = {Improvement of SPECT quantification in small brain structures by using experiment based recovery-coefficient corrections}, series = {European Journal of Nuclear Medicine}, volume = {23}, journal = {European Journal of Nuclear Medicine}, number = {9}, issn = {1619-7089}, pages = {1238 -- 1238}, year = {1996}, language = {en} } @article{GaribaldiBegingCaneseetal.2017, author = {Garibaldi, F. and Beging, Stefan and Canese, R. and Carpinelli, G. and Clinthorne, N. and Colilli, S. and Cosentino, L. and Finocchiaro, P. and Giuliani, F. and Gricia, M. and Lucentini, M. and Majewski, S. and Monno, E. and Musico, P. and Santavenere, F. and T{\"o}dter, J. and Wegener, Hans-Peter and Ziemons, Karl}, title = {A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer}, series = {European Physical Journal Plus}, volume = {132}, journal = {European Physical Journal Plus}, number = {9}, publisher = {Springer}, address = {Berlin}, issn = {2190-5444}, doi = {10.1140/epjp/i2017-11662-x}, year = {2017}, language = {en} } @article{FinkMarshallShahetal.2000, author = {Fink, G. R. and Marshall, J. C. and Shah, N. J. and Weiss, P.H. and Halligan, P. W. and Grosse-Ruyken, M. and Ziemons, Karl and Zilles, K. and Freund, H. J.}, title = {Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI}, series = {Neurology}, volume = {54}, journal = {Neurology}, number = {6}, isbn = {1526-632X}, pages = {1324 -- 1331}, year = {2000}, language = {en} } @article{ErkiKleinesZiemonsetal.1997, author = {Erki, I. and Kleines, H. and Ziemons, Karl and Zwoll, K.}, title = {Interaktives System zur Darstellung funktionaler Bilddaten}, series = {Bildverarbeitung f{\"u}r die Medizin : Algorithmen - Systeme - Anwendungen}, journal = {Bildverarbeitung f{\"u}r die Medizin : Algorithmen - Systeme - Anwendungen}, editor = {Lehmann, Thomas}, publisher = {Verl. der. Augustinus-Buchh.}, address = {Aachen}, isbn = {3-86073-519-5}, pages = {249 -- 254}, year = {1997}, language = {de} } @article{ChristHollendungLarueetal.2004, author = {Christ, D. and Hollendung, A. and Larue, H. and Parl, C. and Streun, M. and Weber, S. and Ziemons, Karl and Halling, H.}, title = {Homogenization of the MultiChannel PM gain by inserting light attenuating masks}, series = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, journal = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4}, issn = {1082-3654}, pages = {2382 -- 2385}, year = {2004}, abstract = {MultiChannel Photomultipliers (PM), like the R7600-00-M64 or R5900-00-M64 from Hamamatsu, are often chosen as photodetectors in high-resolution positron emission tomography (PET). A major problem of this PM is the nonuniform channel gain. In order to solve this problem, light attenuating masks were created. The aim of the masks is a homogenization of the output of all 64 channels using different hole sizes at the channel positions. The hole area, which is individually defined for the different channels, is inversely proportional to the channel gain. The measurements by inserting light attenuating masks improved a homogenization to a ratio of 1:1.2.}, language = {en} } @article{ChoiFelderFelderetal.2020, author = {Choi, Chang-Hoon and Felder, Tim and Felder, J{\"o}rg and Tellmann, Lutz and Hong, Suk-Min and Wegener, Hans-Peter and Shah, N Jon and Ziemons, Karl}, title = {Design, evaluation and comparison of endorectal coils for hybrid MR-PET imaging of the prostate}, series = {Physics in Medicine \& Biology}, volume = {65}, journal = {Physics in Medicine \& Biology}, number = {11}, publisher = {IOP}, address = {Bristol}, issn = {0031-9155}, doi = {10.1088/1361-6560/ab87f8}, year = {2020}, abstract = {Prostate cancer is one of the most common cancers among men and its early detection is critical for its successful treatment. The use of multimodal imaging, such as MR-PET, is most advantageous as it is able to provide detailed information about the prostate. However, as the human prostate is flexible and can move into different positions under external conditions, it is important to localise the focused region-of-interest using both MRI and PET under identical circumstances. In this work, we designed five commonly used linear and quadrature radiofrequency surface coils suitable for hybrid MR-PET use in endorectal applications. Due to the endorectal design and the shielded PET insert, the outer face of the coils investigated was curved and the region to be imaged was outside the volume of the coil. The tilting angles of the coils were varied with respect to the main magnetic field direction. This was done to approximate the various positions from which the prostate could be imaged. The transmit efficiencies and safety excitation efficiencies from simulations, together with the signal-to-noise ratios from the MR images were calculated and analysed. Overall, it was found that the overlapped loops driven in quadrature were superior to the other types of coils we tested. In order to determine the effect of the different coil designs on PET, transmission scans were carried out, and it was observed that the differences between attenuation maps with and without the coils were negligible. The findings of this work can provide useful guidance for the integration of such coil designs into MR-PET hybrid systems in the future.}, language = {en} }