@article{UndenBeckerBongaertsetal.1994, author = {Unden, G. and Becker, S. and Bongaerts, Johannes and Schirawski, J. and Six, S.}, title = {Oxygen regulated gene expression in facultatively anaerobic bacteria}, series = {Antonie van Leeuwenhoek}, volume = {Vol. 66}, journal = {Antonie van Leeuwenhoek}, number = {Iss. 1-3}, issn = {0003-6072 (Print) ; 1572-9699 (online)}, pages = {3 -- 22}, year = {1994}, language = {en} } @article{UndenBeckerBongaertsetal.1995, author = {Unden, G. and Becker, S. and Bongaerts, Johannes and Holighaus, G. and Schirawski, J. and Six, S.}, title = {O2-sensing and O2-dependent gene regulation in facultatively anaerobic bacteria}, series = {Archives of microbiology}, volume = {Vol. 164}, journal = {Archives of microbiology}, number = {Iss. 2}, issn = {1432-072X (E-Journal); 0003-9276 (Print); 0302-8933 (Print)}, pages = {81 -- 90}, year = {1995}, language = {en} } @article{UlberTippkoetterBuchholzetal.2008, author = {Ulber, Roland and Tippk{\"o}tter, Nils and Buchholz, H. and Demmer, W. and Scheper, T.}, title = {Innovative Verfahren in der Molkeaufarbeitung zur Gewinnung neuer Produkte}, series = {Deutsche Milchwirtschaft}, volume = {59}, journal = {Deutsche Milchwirtschaft}, number = {19}, issn = {0012-0480}, pages = {704 -- 706}, year = {2008}, language = {de} } @article{UlberTippkoetter2009, author = {Ulber, Roland and Tippk{\"o}tter, Nils}, title = {Nitratfreie Molke}, series = {Rundschau f{\"u}r Fleischhygiene und Lebensmittel{\"u}berwachung}, journal = {Rundschau f{\"u}r Fleischhygiene und Lebensmittel{\"u}berwachung}, number = {4}, pages = {150 -- 152}, year = {2009}, language = {de} } @article{UlberPothMonzonetal.2010, author = {Ulber, Roland and Poth, Sebastian and Monzon, Magaly and Tippk{\"o}tter, Nils}, title = {Prozessintegration von Hydrolyse und Fermentation von Cellulose- Faserstoff}, series = {Chemie Ingenieur Technik}, volume = {82}, journal = {Chemie Ingenieur Technik}, number = {1-2}, issn = {1522-2640}, doi = {10.1002/cite.200900103}, pages = {135 -- 139}, year = {2010}, abstract = {Ein viel versprechender erneuerbarer Rohstoff f{\"u}r die Produktion von Chemikalien und Treibstoffen ist Lignocellulose aus pflanzlicher Biomasse. Die darin enthaltenen Zucker k{\"o}nnen mittels enzymatischer Hydrolyse freigesetzt und fermentativ zu Ethanol umgesetzt werden. Ein interessanter Ansatz ist dabei die simultane Verzuckerung und Fermentation. Hefen und Enzyme haben mit 30 °C bzw. 50 °C zwar unterschiedliche Temperaturoptima, es konnte aber gezeigt werden, dass auch bei den niedrigeren Temperaturen eine Umsetzung der Cellulose zu Glucose erfolgt, wenn auch langsamer als bei optimalen Bedingungen. Außerdem konnte in Vorversuchen gezeigt werden, dass Ethanol in den zu erwartenden Konzentrationen keinen Einfluss auf die enzymatische Umsetzung hat.}, language = {de} } @incollection{UlberMufflerTippkoetteretal.2011, author = {Ulber, Roland and Muffler, Kai and Tippk{\"o}tter, Nils and Hirth, Thomas and Sell, Dieter}, title = {Introduction to Renewable Resources in the Chemical Industry}, series = {Renewable raw materials : new feedstocks for the chemical industry}, booktitle = {Renewable raw materials : new feedstocks for the chemical industry}, editor = {Ulber, Roland and Sell, Dieter and Hirth, Thomas}, edition = {1. Auflage}, publisher = {Wiley-VCH-Verlag}, address = {Weinheim}, isbn = {978-3-527-32548-1}, pages = {1 -- 6}, year = {2011}, language = {de} } @article{TuegBaumann1994, author = {T{\"u}g, Helmut and Baumann, Marcus}, title = {Problems of UV-B radiation measurements in biological research : critical remarks on current techniques and suggestions for improvements}, series = {Geophysical research letters}, volume = {Vol. 21}, journal = {Geophysical research letters}, number = {Iss. 8}, issn = {1944-8007 (E-Journal); 0094-8276 (Print)}, pages = {689 -- 692}, year = {1994}, language = {en} } @article{TuegBaumann1995, author = {T{\"u}g, Helmut and Baumann, Marcus}, title = {Reply to the comments by R.L. McKenzie and P.V. Johnston on our paper "Problems of UV-B radiation measurements in biological research: Critical Remarks on current techniques and suggestions for improvements"}, series = {Geophysical research letters}, volume = {Vol. 22}, journal = {Geophysical research letters}, number = {Iss. 9}, issn = {1944-8007 (E-Journal); 0094-8276 (Print)}, pages = {1159 -- 1160}, year = {1995}, language = {en} } @article{TurekKettererClassenetal.2007, author = {Turek, Monika and Ketterer, Lothar and Claßen, Melanie and Berndt, Heinz and Elbers, Gereon and Kr{\"u}ger, Peter and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and Electrochemical Investigations of an EIS-(Electrolyte-Insulator-Semiconductor) based Biosensor for Cyanide Detection}, series = {Sensors}, volume = {7}, journal = {Sensors}, number = {8}, isbn = {1424-8220}, pages = {1415 -- 1426}, year = {2007}, language = {en} } @article{TurckBerndt1981, author = {Turck, Christoph W. and Berndt, Heinz}, title = {Synthese definierter Peptid-Derivate durch Aminolyse von 3-(Nα-Acyl-peptidyloxy)-2-hydroxy-N-alkylbenzamiden bei erh{\"o}hten Temperaturen, I : Synthese des Modellpeptid-Derivates Z-Ala-Phe-Gly-N(Et)2}, series = {Hoppe-Seyler´s Zeitschrift f{\"u}r physiologische Chemie}, volume = {362}, journal = {Hoppe-Seyler´s Zeitschrift f{\"u}r physiologische Chemie}, number = {1}, issn = {1437-4315}, doi = {10.1515/bchm2.1981.362.1.821}, pages = {821 -- 828}, year = {1981}, language = {de} } @article{TrappLammersEngudaretal.2023, author = {Trapp, Svenja and Lammers, Tom and Engudar, Gokce and Hoehr, Cornelia and Denkova, Antonia G. and Paulßen, Elisabeth and de Kruijff, Robin M.}, title = {Membrane-based microfluidic solvent extraction of Ga-68 from aqueous Zn solutions: towards an automated cyclotron production loop}, series = {EJNMMI Radiopharmacy and Chemistry}, volume = {2023}, journal = {EJNMMI Radiopharmacy and Chemistry}, number = {8, Article number: 9}, publisher = {Springer Nature}, issn = {2365-421X}, doi = {10.1186/s41181-023-00195-2}, pages = {1 -- 14}, year = {2023}, language = {en} } @article{TranBongaertsVladetal.1997, author = {Tran, Quang Hon and Bongaerts, Johannes and Vlad, Dorina and Unden, Gottfried}, title = {Requirement for the proton-pumping NADH dehydrogenase I of Escherichia coli in respiration of NADH to fumarate and its bioenergetic implications}, series = {European journal of biochemistry}, volume = {Vol. 244}, journal = {European journal of biochemistry}, number = {Iss. 1}, issn = {0014-2956}, pages = {155 -- 160}, year = {1997}, language = {en} } @article{TixMollKrafftetal.2024, author = {Tix, Julian and Moll, Fabian and Krafft, Simone and Betsch, Matthias and Tippk{\"o}tter, Nils}, title = {Hydrogen production from enzymatic pretreated organic waste with thermotoga neapolitana}, series = {Energies}, volume = {17}, journal = {Energies}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en17122938}, pages = {20 Seiten}, year = {2024}, abstract = {Biomass from various types of organic waste was tested for possible use in hydrogen production. The composition consisted of lignified samples, green waste, and kitchen scraps such as fruit and vegetable peels and leftover food. For this purpose, the enzymatic pretreatment of organic waste with a combination of five different hydrolytic enzymes (cellulase, amylase, glucoamylase, pectinase and xylase) was investigated to determine its ability to produce hydrogen (H2) with the hydrolyzate produced here. In course, the anaerobic rod-shaped bacterium T. neapolitana was used for H2 production. First, the enzymes were investigated using different substrates in preliminary experiments. Subsequently, hydrolyses were carried out using different types of organic waste. In the hydrolysis carried out here for 48 h, an increase in glucose concentration of 481\% was measured for waste loads containing starch, corresponding to a glucose concentration at the end of hydrolysis of 7.5 g·L-1. In the subsequent set fermentation in serum bottles, a H2 yield of 1.26 mmol H2 was obtained in the overhead space when Terrific Broth Medium with glucose and yeast extract (TBGY medium) was used. When hydrolyzed organic waste was used, even a H2 yield of 1.37 mmol could be achieved in the overhead space. In addition, a dedicated reactor system for the anaerobic fermentation of T. neapolitana to produce H2 was developed. The bioreactor developed here can ferment anaerobically with a very low loss of produced gas. Here, after 24 h, a hydrogen concentration of 83\% could be measured in the overhead space.}, language = {en} } @misc{TippkoetterZhangPothetal.2010, author = {Tippk{\"o}tter, Nils and Zhang, M. and Poth, S. and Ulber, Roland}, title = {Enzymatische Lignindegradierung unter Einsatz eines Optimierungsalgorithmus}, series = {Chemie Ingenieur Technik}, volume = {82}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201050707}, pages = {1601 -- 1602}, year = {2010}, abstract = {Lignine bestehen aus einem hochgradig vernetzten Polymer phenolischer Grundeinheiten. Diese Verbindungen sind eine Quelle vielversprechender chemischer Grundbausteine. Auch die enzymatische Modifikation der Materialeigenschaften des Lignins ist f{\"u}r dessen Anwendung von Interesse. Aufgrund der verschiedenen Bindungstypen im Lignin ist eine Auftrennung mit nur einem Enzym unwahrscheinlich. Vielmehr sind verschiedene mediatorgest{\"u}tzte Reaktionen notwendig. Pilze, wie z.B. T. versicolor, nutzen Enzymkombinationen zum Aufschluss des Lignins. Hierbei kommen Laccase, Ligninperoxidase und Manganperoxidase zum Einsatz. Die optimale Kombination der Enzyme und ihrer Mediatoren bzw. Stabilisatoren ist Ziel der Untersuchungen. Aufgrund der großen Parameteranzahl wurde ein genetischer Algorithmus eingesetzt. Als Versuchsparameter wurden gew{\"a}hlt: die Verh{\"a}ltnisse der Enzyme, Ligninmasse, Konzentrationen an Eisen-, Mangan-, Oxalat-Ionen, ABTS, Violurs{\"a}ure und H₂O₂. Somit werden elf Parameter simultan optimiert. Als Algorithmus wurde ein Programm mit variabler Genkodierung entwickelt. Die Umsetzung des Lignins wird dabei {\"u}ber den verfolgt. Zurzeit ist ein enzymatischer Umsatz von 12\% m{\"o}glich. Als Referenz wurde eine chemische Lignindegradierung mit einem Umsatzvon 37\% etabliert. Die sechs Generationen des Algorithmus zeigen eine Kongruenz der Enzymkonzentrationen von LiP, MnP und VeP, w{\"a}hrend Laccase keinen Einfluss hat. Des Weiteren beeinflussen die Konzentrationen von Mangan und Oxalat die Umsetzung, w{\"a}hrend die Variation von ABTS- und H₂O₂ nur eine geringe Auswirkung hat.}, language = {de} } @misc{TippkoetterWulfhorstMogueetal.2014, author = {Tippk{\"o}tter, Nils and Wulfhorst, H. and Mogue, N. and M{\"o}hring, S. and Roth, J. and Ulber, Roland}, title = {Spektrometrische Messung und Modellierung der enzymatischen Hydrolyse von Biomasse nach Organosolv- und Liquid Hot Water-Aufschl{\"u}ssen (LHW)}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450269}, pages = {1584}, year = {2014}, abstract = {In diesem Beitrag wird die NIR- und MIR-Spektrometrie in Kombination mit multivariaten Kalibrationsmodellen zur Analyse von Monosacchariden und Cellulose aus Biomasse etabliert. Spektrengemischter Standardl{\"o}sungen mit definierten Glucose- und Xylosekonzentrationen in Wasser werden im NIR-(Lambda 750, Perkin Elmer, USA) und MIR-Bereich (Spektrum 100, PerkinElmer) in Gegenwart von entweder Carboxymethylcellulose oder Grasfasern aufgenommen. Darauf basierend werden Kalibrationsmodelle (Unscrambler®, CAMO-Software AS, Norwegen) entwickelt und zur Vorhersage der Zuckerkonzentration in den Hydrolyseproben und der Celluloseanteile angewendet. Dar{\"u}ber hinaus wird die Partikelgr{\"o}ße der Rohstoffe bestimmt. Die Messergebnisse bilden die experimentelle Basis f{\"u}r die numerische Modellierung der Reaktionskinetik der enzymatischen Hydrolyse von Lignocellulose. Das Modell kombiniert die Bilanzierung der Partikelgr{\"o}ßenverteilungen mit der Multienzymkinetik. Dabei werden neben der Partikelgr{\"o}ßenverteilung und der Substratkonzentration die Zusammensetzung der Rohstoffe nach Vorbehandlung sowie die Produktinhibierung und mehrere enzymatische Aktivit{\"a}ten ber{\"u}cksichtigt. Das Modell erm{\"o}glicht es, die Partikelgr{\"o}ßenverteilungen und die Konzentrationen der Substrate und Produkte w{\"a}hrend der Hydrolyse vorherzusagen und die kinetischen Parameter im Batch- sowie im Fed-Batch-Reaktor zu bestimmen.}, language = {de} } @article{TippkoetterWollnySucketal.2014, author = {Tippk{\"o}tter, Nils and Wollny, Steffen and Suck, Kirstin and Sohling, Ulrich and Ruf, Friedrich and Ulber, Roland}, title = {Recycling of spent oil bleaching earth as source of glycerol for the anaerobic production of acetone, butanol, and ethanol with Clostridium diolis and lipolytic Clostridium lundense}, series = {Engineering in Life Sciences}, volume = {14}, journal = {Engineering in Life Sciences}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1618-2863}, doi = {10.1002/elsc.201300113}, pages = {425 -- 432}, year = {2014}, abstract = {A major part of edible oil is subjected to bleaching procedures, primarily with minerals applied as adsorbers. Their recycling is currently done either by regaining the oil via organic solvent extraction or by using the spent bleaching earth (SBE) as additive for animal feed, etc. As a new method, the reutilization of the by-product SBE for the microbiologic formation of acetone, butanol, and ethanol (ABE) is presented as proof-of-concept. The SBE was taken from a palm oil cleaning process. The recycling concept is based on the application of lipolytic clostridia strains. Due to considerably long fermentation times, co-fermentation with Candida rugosa and enzymatic hydrolyses of the bound oil with a subsequent clostridia fermentation are shown as alternative routes. Anaerobic fermentations under comparison of different clostridia strains were performed with glycerol media, enzymatically hydrolyzed palm oil and SBE. Solutes, side product compositions and productivities were quantified via HPLC. A successful production of ABE solutes from SBE has been done with a yield of 0.15 g butanol per gram of bound glycerol. Thus, the biotechnological recycling of the waste stream is possible in principle. Inhibition of the substrate suspension has been observed. A chromatographic ion-exchange of substrates increased the biomass concentration.}, language = {en} } @article{TippkoetterWollnyKampeisetal.2011, author = {Tippk{\"o}tter, Nils and Wollny, S. and Kampeis, P. and Oster, J. and Schneider, H. and Ulber, Roland}, title = {Magnetseparation von Proteinen : Separation von Zielmolek{\"u}len durch hochselektive Aptamere}, series = {GIT Labor-Fachzeitschrift}, volume = {55}, journal = {GIT Labor-Fachzeitschrift}, number = {10}, publisher = {Wiley}, address = {Weinheim}, pages = {666}, year = {2011}, abstract = {Durch die Kombination von Oligonukleotid-Liganden (Aptameren) hoher Bindungsaffinit{\"a}ten mit hochselektiv abtrennbaren magnetisierbaren Mikropartikeln wird eine einstufige Separation von Zielmolek{\"u}len aus mikrobiologischen Produktionsans{\"a}tzen m{\"o}glich. Die Aptamere werden hierf{\"u}r reversibel auf den Partikeloberfl{\"a}chen gebunden und f{\"u}r die spezifische Isolierung von Bioprodukten eingesetzt. Die Abtrennung der beladenen Partikel erfolgt durch einen neuen Rotor-Stator-Separator mit Hochgradient-Magnetfeld.}, language = {de} } @misc{TippkoetterWiesenThieletal.2014, author = {Tippk{\"o}tter, Nils and Wiesen, S. and Thiel, A. and Muffler, K. and Ulber, Roland}, title = {Biotechnologische Wertstoffgewinnung entlang der Prozessketten Gr{\"u}ner und Pflanzen{\"o}l-Bioraffinerien}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450283}, pages = {1605}, year = {2014}, abstract = {Der nachwachsende Rohstoff Raps ist in großen Mengen verf{\"u}gbar und eine Quelle f{\"u}r Biomolek{\"u}le mit hohem Wertsch{\"o}pfungspotenzial. Entwicklungen zur biotechnologischen Wertstoffgewinnung werden dabei schwerpunktm{\"a}ßig in den Bereichen Aufarbeitung und Funktionalisierung von Polyphenolen und Fetten betrieben. Bei der Verarbeitung der Pflanzenmaterialien werden dabei insbesondere Verfahren zur adsorptiven Aufreinigung und Auftrennung mittels Materialien mit modifizierten Bleicherden und anderen organischen oder anorganischen Adsorbentien untersucht. Ferner wurden f{\"u}r die Aufreinigung von Polyphenolen adsorptive sowie extraktive Prozesse entwickelt. Bei den Entwicklungen wird ber{\"u}cksichtigt, dass Bioraffinerien auf eine fortw{\"a}hrende Gew{\"a}hrleistung eines hohen Produktions- bzw. Lieferbedarfs nachwachsender Rohstoffe angewiesen sind. Somit werden Optionen dezentraler regionaler Vorbehandlungs- und Wertsch{\"o}pfungsketten in der N{\"a}he landwirtschaftlicher Betriebe einbezogen. Neben neuen Aufreinigungsverfahren werden mikrobielle und enzymatische Prozesse zur wertsteigernden Umsetzung von Glycerin, Polyphenolen und Zuckermonomeren vorgestellt sowie Limitierungen nachwachsender Rohstoffe der 2. Generation diskutiert.}, language = {de} } @misc{TippkoetterWasserscheid2014, author = {Tippk{\"o}tter, Nils and Wasserscheid, P.}, title = {Rapid-Prototyping-Strukturen f{\"u}r ressourceneffiziente Prozesse in Chemie und Biotechnologie}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450451}, pages = {1369 -- 1370}, year = {2014}, abstract = {Die Teilefertigung durch Rapid Prototyping (RP) verk{\"u}rzt den Weg von der Idee bis zum Produkt, wobei unter anderem Optimierungszyklen in geringer Zeit durchlaufen werden k{\"o}nnen. Ferner er{\"o}ffnen neue Entwicklungen in diesem Bereich die M{\"o}glichkeit individueller Produktionsverfahren. Im Unterschied zur klassischen Fertigung von Prototypen wird beim RP mit additiver Schichtfertigung (Additive Layer Manufacturing, ALM) gearbeitet. Je nach Methode werden Fl{\"u}ssigkeiten oder Pulver nach Vorgaben eines 3D-Computermodells sequentiell aufgetragen. Diese Verfahren existieren seit ca. 25 Jahren, jedoch sind seit kurzem ausgesprochen g{\"u}nstige Ger{\"a}te verf{\"u}gbar, die Objekte mit Genauigkeiten bis 20 lm fertigen k{\"o}nnen. Das RP hat in klinischen Anwendungsgebieten bzw. im Bereich des Tissue Engineering bereits vielfach Einzug gefunden. Aber auch chemisch-biotechnologische Entwicklungen k{\"o}nnen von den Verfahren profitieren. So wurden Mikrofluidiksysteme und Bioreaktoren bereits erfolgreich durch RP gefertigt. Durch ALM ist ebenso die Herstellung von Reaktionseinheiten aus biokompatiblen Materialien wie ionotropen Gelen m{\"o}glich. Ferner sind sehr komplexe Strukturierungen von Oberfl{\"a}chen im Nanometerbereich realisierbar, die f{\"u}r die Auftragung heterogener Katalysatoren oder auch Mikroorganismen eingesetzt werden k{\"o}nnen. Auch der Bereich Reaktoren- und Apparatebau kann von den Fortschritten in der additiven Fertigung profitieren. Verfahren wie selektives Laser- oder Elektronenstrahlschmelzen erlauben es, metallische Komponenten in nahezu beliebigen Geometrien zu fertigen. Somit k{\"o}nnen Strukturen verwirklicht werden, die mit konventionellen Fertigungstechniken nur sehr schwer oder {\"u}berhauptnicht herstellbar w{\"a}ren. Durch Anwendung von rechnergest{\"u}tzter Modellierung k{\"o}nnen optimale Strukturen identifiziert und additiv gefertigt werden. Eine anschließende katalytische Funktionalisierung der Oberfl{\"a}che erm{\"o}glicht die Herstellung strukturierter Reaktoren mit maßgeschneiderten Eigenschaften.}, language = {de} } @techreport{TippkoetterWagner2019, author = {Tippk{\"o}tter, Nils and Wagner, Sebastian}, title = {Biomimetischer Klebstoff aus ligninhaltigen Pflanzenresten (Teilvorhaben 1 und 2) : Schlussbericht zum Vorhaben : Laufzeit: 01.01.2016 bis 31.03.2019}, publisher = {FH Aachen}, address = {J{\"u}lich}, doi = {10.2314/KXP:169732777X}, pages = {109 S.}, year = {2019}, language = {de} }