@article{VahidpourOberlaenderSchoening2018, author = {Vahidpour, Farnoosh and Oberl{\"a}nder, Jan and Sch{\"o}ning, Michael Josef}, title = {Flexible Calorimetric Gas Sensors for Detection of a Broad Concentration Range of Gaseous Hydrogen Peroxide: A Step Forward to Online Monitoring of Food-Package Sterilization Processes}, series = {Phys. Status Solidi A}, volume = {215}, journal = {Phys. Status Solidi A}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, doi = {10.1002/pssa.201800044}, pages = {Artikel 1800044}, year = {2018}, abstract = {In this study, flexible calorimetric gas sensors are developed for specificdetection of gaseous hydrogen peroxide (H₂O₂) over a wide concentrationrange, which is used in sterilization processes for aseptic packaging industry.The flexibility of these sensors is an advantage for identifying the chemical components of the sterilant on the corners of the food boxes, so-called "coldspots", as critical locations in aseptic packaging, which are of great importance. These sensors are fabricated on flexible polyimide films by means of thin-film technique. Thin layers of titanium and platinum have been deposited on polyimide to define the conductive structures of the sensors. To detect the high-temperature evaporated H₂O₂, a differential temperature set-up is proposed. The sensors are evaluated in a laboratory-scaled sterilizationsystem to simulate the sterilization process. The concentration range of the evaporated H₂O₂ from 0 to 7.7\% v/v was defined and the sensors have successfully detected high as well as low H₂O₂ concentrations with a sensitivity of 5.04 °C/\% v/v. The characterizations of the sensors confirm their precise fabrication, high sensitivity and the novelty of low H₂O₂ concentration detections for future inline monitoring of food-package sterilization.}, language = {en} } @inproceedings{UlmerBraunWollert2018, author = {Ulmer, Jessica and Braun, Sebastian and Wollert, J{\"o}rg}, title = {Generische IoT Adapter f{\"u}r semantische Maschinenschnittstellen}, series = {Internet of Things - vom Sensor bis zur Cloud}, booktitle = {Internet of Things - vom Sensor bis zur Cloud}, pages = {1 -- 5}, year = {2018}, language = {de} } @inproceedings{UibelMoorkamp2018, author = {Uibel, Thomas and Moorkamp, Wilfried}, title = {Geh- und Radwegbr{\"u}cken in NRW - Bestandsanalyse und Perspektiven}, series = {Holzbr{\"u}ckenbau in der Offensive : Erhaltung, Ert{\"u}chtigung, Neubauten : 5. Internationale Holzbr{\"u}ckentage (IHB 2018) FILharmonie Filderstadt, Filderstadt/Stuttgart (DE), 17./18. April 2018}, booktitle = {Holzbr{\"u}ckenbau in der Offensive : Erhaltung, Ert{\"u}chtigung, Neubauten : 5. Internationale Holzbr{\"u}ckentage (IHB 2018) FILharmonie Filderstadt, Filderstadt/Stuttgart (DE), 17./18. April 2018}, publisher = {forum-holzbau}, address = {Biel}, isbn = {978-3-906226-19-4}, pages = {19 -- 32}, year = {2018}, language = {de} } @book{TuennemannAzzab2018, author = {T{\"u}nnemann, Thomas and Azzab, Miriam}, title = {Sulla Strada : Workshop Formine 2018}, publisher = {FH Aachen, Fachbereich Architektur}, address = {Aachen}, isbn = {978-3-9820159-0-3}, publisher = {Fachhochschule Aachen}, pages = {122 Seiten}, year = {2018}, abstract = {Impressum | Inhalt 03 Thomas T{\"u}nnemann | Unterwegs...am Wege 04 Projekte 06 Annelie Wirtz | Arrivato 08 Sebastian Rupp | Tracce Passate 18 Henri Boh | Terrazze sopra il lago 28 Hermann Stuzmann | L´Ammissione {\`e} Gratuita 32 Vivienne Scheidz | IL Potere dei Simboli 34 Felix Keller | Strada Infinita 38 Moran Dorner | Catturato nel Posto 42 Kevin Osterkamp | Vortice 46 Kristina Foidle | La Vespa e il Fico 52 Simon Rix | Sognare Sulla Strada 58 Jennifer Sikora | Strada Pietrosa 66 Sabrina Fr{\"o}mbgen | Bolla di Pensiero 72 Miriam Azzab | Il Momento 78 Georg M{\"o}rke | Sentiero stretto 84 Saskia Fr{\"o}mbgen | Nuova Prospetiva 90 Frank Drehsen | A grado a grado 96 Caronlin Gr{\"u}n | Le prospettive 100 Thomas T{\"u}nnemann | Flusso nella Foresta 104 Atmosph{\"a}risches Auf die K{\"u}che | Kulinarisches 114 Carpe Diem | Fotografisches 116}, language = {de} } @inproceedings{TranMatthiesStavroulakisetal.2018, author = {Tran, Ngoc Trinh and Matthies, Hermann G. and Stavroulakis, Georgios Eleftherios and Staat, Manfred}, title = {Direct plastic structural design by chance constrained programming}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {12 Seiten}, year = {2018}, abstract = {We propose a stochastic programming method to analyse limit and shakedown of structures under random strength with lognormal distribution. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit or the shakedown limit. The edge-based smoothed finite element method (ES-FEM) using three-node linear triangular elements is used.}, language = {en} } @techreport{Tippkoetter2018, author = {Tippk{\"o}tter, Nils}, title = {Lokale Vorbehandlung nachwachsender Rohstoffe f{\"u}r Bioraffinerien (BioSats) : Schlussbericht zum Vorhaben : Laufzeit: 01.03.2012 bis 30.04.2017}, organization = {Technische Universit{\"a}t Kaiserslautern}, doi = {10.2314/GBV:1024204243}, pages = {191 Seiten}, year = {2018}, language = {de} } @book{Timme2018, author = {Timme, Michael}, title = {BGB Crashkurs: der sichere Weg durch die Pr{\"u}fung}, edition = {5. Auflage}, publisher = {C.H. Beck}, address = {M{\"u}nchen}, isbn = {978-3-406-72251-6}, pages = {160 Seiten}, year = {2018}, language = {de} } @inproceedings{ThurnGebhardt2018, author = {Thurn, Laura and Gebhardt, Andreas}, title = {Strategy of Education on Materials for Students}, series = {Conference Proceedings: „New Perspectives in Science Education"}, booktitle = {Conference Proceedings: „New Perspectives in Science Education"}, address = {Florence, Italy}, isbn = {978-88-6292-976-9}, pages = {156 -- 161}, year = {2018}, language = {en} } @article{Thomas2018, author = {Thomas, Axel}, title = {Technologiezentren in der Aachener Region - Retrospektiven und Perspektiven}, series = {VM Verwaltung und Management}, volume = {24}, journal = {VM Verwaltung und Management}, number = {3}, publisher = {Nomos}, address = {Baden-Baden}, issn = {0947-9856}, doi = {10.5771/0947-9856-2018-3-147}, pages = {147 -- 156}, year = {2018}, language = {de} } @article{Thomas2018, author = {Thomas, Axel}, title = {Zielerreichungen der Technologie- und Gr{\"u}nderzentren aus Sicht der kommunalen Finanzwirtschaft - dargestellt am Beispiel der Aachener Region}, series = {Der Gemeindehaushalt}, volume = {119}, journal = {Der Gemeindehaushalt}, number = {7}, publisher = {Kohlhammer}, address = {Stuttgart}, issn = {0340-3645}, pages = {149 -- 155}, year = {2018}, language = {de} } @article{TeumerCapitainRossJonesetal.2018, author = {Teumer, T. and Capitain, C. and Ross-Jones, J. and Tippk{\"o}tter, Nils and R{\"a}dle, M. and Methner, F.-J.}, title = {In-line Haze Monitoring Using a Spectrally Resolved Back Scattering Sensor}, series = {BrewingScience}, volume = {71}, journal = {BrewingScience}, number = {5/6}, publisher = {Fachverlag Hans Carl}, address = {N{\"u}rnberg}, issn = {1613-2041}, pages = {49 -- 55}, year = {2018}, abstract = {In the present work an optical sensor in combination with a spectrally resolved detection device for in-line particle-size-monitoring for quality control in beer production is presented. The principle relies on the size and wavelength dependent backscatter of growing particles in fluids. Measured interference structures of backscattered light are compared with calculated theoretical values, based on Mie-Theory, and fitted with a linear least square method to obtain particle size distributions. For this purpose, a broadband light source in combination with a process-CCD-spectrometer (charge ? coupled device spectrometer) and process adapted fiber optics are used. The goal is the development of an easy and flexible measurement device for in-line-monitoring of particle size. The presented device can be directly installed in product fill tubes or vessels, follows CIP- (cleaning in place) and removes the need of sample taking. A proof of concept and preliminary results, measuring protein precipitation, are presented.}, language = {en} } @article{TekinAshikagaHorikawaetal.2018, author = {Tekin, Nurettin and Ashikaga, Mitsugu and Horikawa, Atsushi and Funke, Harald}, title = {Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems}, series = {Gas for energy}, journal = {Gas for energy}, number = {2}, publisher = {Vulkan-Verlag}, address = {Essen}, pages = {4}, year = {2018}, abstract = {For fuel flexibility enhancement hydrogen represents a possible alternative gas turbine fuel within future low emission power generation, in case of hydrogen production by the use of renewable energy sources such as wind energy or biomass. Kawasaki Heavy Industries, Ltd. (KHI) has research and development projects for future hydrogen society; production of hydrogen gas, refinement and liquefaction for transportation and storage, and utilization with gas turbine / gas engine for the generation of electricity. In the development of hydrogen gas turbines, a key technology is the stable and low NOx hydrogen combustion, especially Dry Low Emission (DLE) or Dry Low NOx (DLN) hydrogen combustion. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for DLE hydrogen combustion. Thus, the development of DLE hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fueled gas turbines. The DLE Micro-Mix combustion principle for hydrogen fuel has been in development for many years to significantly reduce NOx emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized "diffusion-type" flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of the reactants in the flame region of the micro-flames.}, language = {en} } @article{SvaneborgKarimiVarzanehHojdisetal.2018, author = {Svaneborg, Carsten and Karimi-Varzaneh, Hossein Ali and Hojdis, Nils and Fleck, Franz and Everaers, Ralf}, title = {Kremer-Grest Models for Universal Properties of Specific Common Polymer Species}, series = {Soft Condensed Matter}, journal = {Soft Condensed Matter}, number = {1606.05008}, year = {2018}, abstract = {The Kremer-Grest (KG) bead-spring model is a near standard in Molecular Dynamic simulations of generic polymer properties. It owes its popularity to its computational efficiency, rather than its ability to represent specific polymer species and conditions. Here we investigate how to adapt the model to match the universal properties of a wide range of chemical polymers species. For this purpose we vary a single parameter originally introduced by Faller and M{\"u}ller-Plathe, the chain stiffness. Examples include polystyrene, polyethylene, polypropylene, cis-polyisoprene, polydimethylsiloxane, polyethyleneoxide and styrene-butadiene rubber. We do this by matching the number of Kuhn segments per chain and the number of Kuhn segments per cubic Kuhn volume for the polymer species and for the Kremer-Grest model. We also derive mapping relations for converting KG model units back to physical units, in particular we obtain the entanglement time for the KG model as function of stiffness allowing for a time mapping. To test these relations, we generate large equilibrated well entangled polymer melts, and measure the entanglement moduli using a static primitive-path analysis of the entangled melt structure as well as by simulations of step-strain deformation of the model melts. The obtained moduli for our model polymer melts are in good agreement with the experimentally expected moduli.}, language = {en} } @article{SunAltherrPeietal.2018, author = {Sun, Hui and Altherr, Lena and Pei, Ji and Pelz, Peter F. and Yuan, Shouqi}, title = {Optimal booster station design and operation under uncertain load}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.102}, pages = {102 -- 115}, year = {2018}, abstract = {Given industrial applications, the costs for the operation and maintenance of a pump system typically far exceed its purchase price. For finding an optimal pump configuration which minimizes not only investment, but life-cycle costs, methods like Technical Operations Research which is based on Mixed-Integer Programming can be applied. However, during the planning phase, the designer is often faced with uncertain input data, e.g. future load demands can only be estimated. In this work, we deal with this uncertainty by developing a chance-constrained two-stage (CCTS) stochastic program. The design and operation of a booster station working under uncertain load demand are optimized to minimize total cost including purchase price, operation cost incurred by energy consumption and penalty cost resulting from water shortage. We find optimized system layouts using a sample average approximation (SAA) algorithm, and analyze the results for different risk levels of water shortage. By adjusting the risk level, the costs and performance range of the system can be balanced, and thus the system's resilience can be engineered}, language = {en} } @incollection{StengerAltherrMuelleretal.2018, author = {Stenger, David and Altherr, Lena and M{\"u}ller, Tankred and Pelz, Peter F.}, title = {Product family design optimization using model-based engineering techniques}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_66}, pages = {495 -- 502}, year = {2018}, abstract = {Highly competitive markets paired with tremendous production volumes demand particularly cost efficient products. The usage of common parts and modules across product families can potentially reduce production costs. Yet, increasing commonality typically results in overdesign of individual products. Multi domain virtual prototyping enables designers to evaluate costs and technical feasibility of different single product designs at reasonable computational effort in early design phases. However, savings by platform commonality are hard to quantify and require detailed knowledge of e.g. the production process and the supply chain. Therefore, we present and evaluate a multi-objective metamodel-based optimization algorithm which enables designers to explore the trade-off between high commonality and cost optimal design of single products.}, language = {en} } @inproceedings{SerrorHenzeHacketal.2018, author = {Serror, Martin and Henze, Martin and Hack, Sacha and Schuba, Marko and Wehrle, Klaus}, title = {Towards in-network security for smart homes}, series = {13th International Conference on Availability, Reliability and Security, ARES 2018; Hamburg; Germany; 27 August 2018 through 30 August 2018}, booktitle = {13th International Conference on Availability, Reliability and Security, ARES 2018; Hamburg; Germany; 27 August 2018 through 30 August 2018}, isbn = {978-145036448-5}, doi = {10.1145/3230833.3232802}, pages = {Article numer 3232802}, year = {2018}, language = {en} } @incollection{SchoeningWagnerPoghossianetal.2018, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Poghossian, Arshak and Miyamoto, K.I. and Werner, C.F. and Krause, S. and Yoshinobu, T.}, title = {Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging}, series = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, booktitle = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {9780128097397}, pages = {295 -- 308}, year = {2018}, language = {en} } @book{SchoeningPoghossian2018, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {xii, 480 Seiten ; Illustrationen, Diagramme}, year = {2018}, language = {en} } @incollection{SchoeningPoghossian2018, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Enzyme und Biosensorik}, series = {Einf{\"u}hrung in die Enzymtechnologie}, booktitle = {Einf{\"u}hrung in die Enzymtechnologie}, publisher = {Springer Spektrum}, address = {Berlin}, isbn = {978-3-662-57619-9}, doi = {10.1007/978-3-662-57619-9_18}, pages = {323 -- 347}, year = {2018}, abstract = {Enzymbasierte Biosensoren finden seit mehr als f{\"u}nf Jahrzehnten einen prosperierenden Wachstumsmarkt und werden zunehmend auch in biotechnologischen Prozessen eingesetzt. In diesem Kapitel werden, ausgehend vom Sensorbegriff und typischen Kenngr{\"o}ßen f{\"u}r Biosensoren (Abschn. 18.1), elektrochemische Enzym-Biosensoren vorgestellt und deren typischen Einsatzgebiete diskutiert (Abschn. 18.2). Ein Blick {\"u}ber den „Tellerrand" hinaus zeigt alternative Transduktorprinzipien (Abschn. 18.3) und f{\"u}hrt abschließend in aktuelle Forschungstrends ein (Abschn. 18.4).}, language = {de} } @article{SchwabedalSippelBrandtetal.2018, author = {Schwabedal, Justus T. C. and Sippel, Daniel and Brandt, Moritz D. and Bialonski, Stephan}, title = {Automated Classification of Sleep Stages and EEG Artifacts in Mice with Deep Learning}, doi = {10.48550/arXiv.1809.08443}, year = {2018}, abstract = {Sleep scoring is a necessary and time-consuming task in sleep studies. In animal models (such as mice) or in humans, automating this tedious process promises to facilitate long-term studies and to promote sleep biology as a data-driven f ield. We introduce a deep neural network model that is able to predict different states of consciousness (Wake, Non-REM, REM) in mice from EEG and EMG recordings with excellent scoring results for out-of-sample data. Predictions are made on epochs of 4 seconds length, and epochs are classified as artifactfree or not. The model architecture draws on recent advances in deep learning and in convolutional neural networks research. In contrast to previous approaches towards automated sleep scoring, our model does not rely on manually defined features of the data but learns predictive features automatically. We expect deep learning models like ours to become widely applied in different fields, automating many repetitive cognitive tasks that were previously difficult to tackle.}, language = {en} }