@article{ScheerBalimaneHaywardetal.2012, author = {Scheer, Nico and Balimane, Praveen and Hayward, Michael D. and Buechel, Sandra and Kauselmann, Gunther and Wolf, C. Roland}, title = {Generation and Characterization of a Novel Multidrug Resistance Protein 2 Humanized Mouse Line}, series = {Drug Metabolism and Disposition}, volume = {40}, journal = {Drug Metabolism and Disposition}, number = {11}, publisher = {ASPET}, address = {Bethesda, Md.}, issn = {1521-0111}, doi = {10.1124/dmd.112.047605}, pages = {2212 -- 2218}, year = {2012}, abstract = {The multidrug resistance protein (MRP) 2 is predominantly expressed in liver, intestine, and kidney, where it plays an important role in the excretion of a range of drugs and their metabolites or endogenous compounds into bile, feces, and urine. Mrp knockout [Mrp2(-/-)] mice have been used recently to study the role of MRP2 in drug disposition. Here, we describe the first generation and initial characterization of a mouse line humanized for MRP2 (huMRP2), which is nulled for the mouse Mrp2 gene and expresses the human transporter in the organs and cell types where MRP2 is normally expressed. Analysis of the mRNA expression for selected cytochrome P450 and transporter genes revealed no major changes in huMRP2 mice compared with wild-type controls. We show that human MRP2 is able to compensate functionally for the loss of the mouse transporter as demonstrated by comparable bilirubin levels in the humanized mice and wild-type controls, in contrast to the hyperbilirubinemia phenotype that is observed in MRP2(-/-) mice. The huMRP2 mouse provides a model to study the role of the human transporter in drug disposition and in assessing the in vivo consequences of inhibiting this transporter by compounds interacting with human MRP2.}, language = {en} } @article{ScheerKapelyukhRodeetal.2012, author = {Scheer, Nico and Kapelyukh, Yury and Rode, Anja and Buechel, Sandra and Wolf, C. Roland}, title = {Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines}, series = {Molecular Pharmacology}, volume = {82}, journal = {Molecular Pharmacology}, number = {6}, publisher = {ASPET}, address = {Bethesda, Md.}, issn = {1521-0111}, doi = {10.1124/mol.112.080036}, pages = {1022 -- 1029}, year = {2012}, abstract = {Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction.}, language = {en} } @article{ScheerSnaithWolfetal.2013, author = {Scheer, Nico and Snaith, Mike and Wolf, C. Roland and Seibler, Jost}, title = {Generation and utility of genetically humanized mouse models}, series = {Drug Discovery Today}, volume = {Vol 18}, journal = {Drug Discovery Today}, number = {23-24}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1359-6446}, doi = {10.1016/j.drudis.2013.07.007}, pages = {1200 -- 1211}, year = {2013}, language = {en} } @article{LassonczykAlailyHuthetal.1990, author = {Lassonczyk, Beate and Alaily, F. and Huth, A. and Gensior, A.}, title = {Genesis of soils in the arid part of northeast Somalia / F. Alaily, B. Lassonczyk, A.Huth and A. Gensior}, series = {Berliner geowissenschaftliche Abhandlungen / Reihe A, Geologie und Pal{\"a}ontologie / hrsg. von d. Geowissenschaftlichen Instituten der Freien u. d. Technischen Universit{\"a}t Berlin. 120 A (1990)}, journal = {Berliner geowissenschaftliche Abhandlungen / Reihe A, Geologie und Pal{\"a}ontologie / hrsg. von d. Geowissenschaftlichen Instituten der Freien u. d. Technischen Universit{\"a}t Berlin. 120 A (1990)}, isbn = {0172-8784}, pages = {695 -- 711}, year = {1990}, language = {en} } @article{BorgmeierBongaertsMeinhardt2012, author = {Borgmeier, Claudia and Bongaerts, Johannes and Meinhardt, Friedhelm}, title = {Genetic analysis of the Bacillus licheniformis degSU operon and the impact of regulatory mutations on protease production}, series = {Journal of biotechnology}, volume = {159}, journal = {Journal of biotechnology}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2012.02.011}, pages = {12 -- 20}, year = {2012}, abstract = {Disruption experiments targeted at the Bacillus licheniformis degSU operon and GFP-reporter analysis provided evidence for promoter activity immediately upstream of degU. pMutin mediated concomitant introduction of the degU32 allele - known to cause hypersecretion in Bacillus subtilis - resulted in a marked increase in protease activity. Application of 5-fluorouracil based counterselection through establishment of a phosphoribosyltransferase deficient Δupp strain eventually facilitated the marker-free introduction of degU32 leading to further protease enhancement achieving levels as for hypersecreting wild strains in which degU was overexpressed. Surprisingly, deletion of rapG - known to interfere with DegU DNA-binding in B. subtilis - did not enhance protease production neither in the wild type nor in the degU32 strain. The combination of degU32 and Δupp counterselection in the type strain is not only equally effective as in hypersecreting wild strains with respect to protease production but furthermore facilitates genetic strain improvement aiming at biological containment and effectiveness of biotechnological processes.}, language = {en} } @article{DeppeKlatteBongaertsetal.2011, author = {Deppe, Veronika Maria and Klatte, Stephanie and Bongaerts, Johannes and Maurer, Karl-Heinz and O'Connell, Timothy and Meinhardt, Friedhelm}, title = {Genetic control of Amadori product degradation in Bacillus subtilis via regulation of frlBONMD expression by FrlR}, series = {Applied and environmental microbiology}, volume = {Vol. 77}, journal = {Applied and environmental microbiology}, number = {No. 9}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, issn = {1098-5336 (E-Journal); 0003-6919 (Print); 0099-2240 (Print)}, pages = {2839 -- 2846}, year = {2011}, language = {en} } @article{MedlinLangeBaumann1994, author = {Medlin, L. K. and Lange, M. and Baumann, Marcus}, title = {Genetic differentiation among three colony-forming species of Phaeocystis : further evidence for the phylogeny of the Prymnesiophyta}, series = {Phycologia}, volume = {Vol. 33}, journal = {Phycologia}, number = {Iss. 3}, issn = {0031-8884}, pages = {199 -- 212}, year = {1994}, language = {en} } @article{ScheerWolf2014, author = {Scheer, Nico and Wolf, C. Roland}, title = {Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications}, series = {Xenobiotica}, volume = {44}, journal = {Xenobiotica}, number = {2}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {1366-5928}, doi = {10.3109/00498254.2013.815831}, pages = {96 -- 108}, year = {2014}, abstract = {1. Drug metabolizing enzymes and transporters play important roles in the absorption, metabolism, tissue distribution and excretion of various compounds and their metabolites and thus can significantly affect their efficacy and safety. Furthermore, they can be involved in drug-drug interactions which can result in adverse responses, life-threatening toxicity or impaired efficacy. Significant species differences in the interaction of compounds with drug metabolizing enzymes and transporters have been described. 2. In order to overcome the limitation of animal models in accurately predicting human responses, a large variety of mouse models humanized for drug metabolizing enzymes and to a lesser extent drug transporters have been created. 3. This review summarizes the literature describing these mouse models and their key applications in studying the role of drug metabolizing enzymes and transporters in drug bioavailability, tissue distribution, clearance and drug-drug interactions as well as in human metabolite testing and risk assessment. 4. Though such humanized mouse models have certain limitations, there is great potential for their use in basic research and for testing and development of new medicines. These limitations and future potentials will be discussed.}, language = {en} } @article{WallerBraunHojdisetal.2007, author = {Waller, Mark P. and Braun, Heiko and Hojdis, Nils and B{\"u}hl, Michael}, title = {Geometries of Second-Row Transition-Metal Complexes from Density-Functional Theory}, series = {Journal of Chemical Theory and Computation}, volume = {3}, journal = {Journal of Chemical Theory and Computation}, number = {6}, issn = {1549-9626}, doi = {10.1021/ct700178y}, pages = {2234 -- 2242}, year = {2007}, language = {en} } @article{KotterHammonRiekert1989, author = {Kotter, Michael and Hammon, Ulrich and Riekert, Lothar}, title = {Gewinnung niedriger Olefine aus Methanol bei partiellem Umsatz mit R{\"u}ckf{\"u}hrung / U. Hammon ; M. Kotter ; L. Riekert}, series = {Chemie - Ingenieur - Technik. 61 (1989), H. 2}, journal = {Chemie - Ingenieur - Technik. 61 (1989), H. 2}, isbn = {0009-286X}, pages = {151 -- 152}, year = {1989}, language = {de} } @article{SelmerSommerladeIngendohetal.1994, author = {Selmer, Thorsten and Sommerlade, Hans-J{\"o}rg and Ingendoh, Arnd and Gieselmann, Volkmar}, title = {Glycosylation and phosphorylation of arylsulfatase A / Sommerlade, Hans-J{\"o}rg. ; Selmer, Thomas. ; Ingendoh, Arnd ; Gieselmann, Volkmar ; Figura, Kurt von ; Neifer, Klaus ; Schmidt, Bernhard}, series = {Journal of Biological Chemistry. 269 (1994), H. 33}, journal = {Journal of Biological Chemistry. 269 (1994), H. 33}, isbn = {1083-351X}, pages = {20977 -- 20981}, year = {1994}, language = {en} } @article{SiekerNeunerDimitrovaetal.2010, author = {Sieker, Tim and Neuner, Andreas and Dimitrova, Darina and Tippk{\"o}tter, Nils and Bart, Hans-J{\"o}rg and Heinzle, Elmar and Ulber, Roland}, title = {Grassilage als Rohstoff f{\"u}r die chemische Industrie}, series = {Chemie Ingenieur Technik}, volume = {82}, journal = {Chemie Ingenieur Technik}, number = {8, Special Issue: Industrielle Nutzung nachwachsender Rohstoffe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2640}, doi = {10.1002/cite.201000088}, pages = {1153 -- 1159}, year = {2010}, abstract = {Grassilage stellt einen nachwachsenden Rohstoff mit großem Potenzial dar. Neben Cellulose und Hemicellulose enth{\"a}lt sie auch organische S{\"a}uren, insbesondere Milchs{\"a}ure. In einem Bioraffinerie-Projekt wird die Milchs{\"a}ure aus der Silage isoliert und mit gentechnisch optimierten St{\"a}mmen zu L-Lysin weiterverarbeitet. Die Lignocellulose wird hydrolysiert und zu Ethanol fermentiert. Ein besonderes Augenmerk liegt auf der Integration der unterschiedlichen Prozesse sowie der einzelnen Prozessschritte zu einem Gesamtprozess, der s{\"a}mtliche Inhaltsstoffe der Silage verwertet.}, language = {de} } @article{BiselliLuellauWandrey1994, author = {Biselli, Manfred and L{\"u}llau, E. and Wandrey, Christian}, title = {Growth and metabolism of CHO-cells in porous glass carriers / L{\"u}llau, E. ; Biselli, M. ; Wandrey, C.}, series = {Animal cell technology : products of today, prospects for tomorrow ; ESACT, European Society for Animal Cell Technology, the 12th meeting / Ed. R. E. Spier}, journal = {Animal cell technology : products of today, prospects for tomorrow ; ESACT, European Society for Animal Cell Technology, the 12th meeting / Ed. R. E. Spier}, publisher = {Butterworth-Heinemann}, address = {Oxford}, isbn = {0750618450}, pages = {252 -- 255}, year = {1994}, language = {en} } @article{WackwitzBongaertsGoodmanetal.1999, author = {Wackwitz, B. and Bongaerts, Johannes and Goodman, S. D. and Unden, Gottfried}, title = {Growth phase-dependent regulation of nuoA-N expression in Escherichia coli K-12 by the Fis protein: upstream binding sites and bioenergetic significance}, series = {Molecular and general genetics : MGG}, volume = {Vol. 262}, journal = {Molecular and general genetics : MGG}, number = {Iss. 4 - 5}, issn = {1617-4623 (E-Journal); 1617-4615 (Print)}, pages = {876 -- 883}, year = {1999}, language = {en} } @article{WagnerMolinaYoshinobuetal.2007, author = {Wagner, Torsten and Molina, Roberto and Yoshinobu, Tatsuo and Kloock, Joachim P. and Biselli, Manfred and Canzoneri, Michele and Schnitzler, Thomas and Sch{\"o}ning, Michael Josef}, title = {Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications}, series = {Electrochimica Acta. 53 (2007), H. 2}, journal = {Electrochimica Acta. 53 (2007), H. 2}, isbn = {0013-4686}, pages = {305 -- 311}, year = {2007}, language = {en} } @article{ClaessenGrefenMangetal.2010, author = {Claessen, O. and Grefen, Dana and Mang, Thomas and Dikland, H. G. and Dikland, H. G. and Duin, M. van}, title = {Helle Fensterprofilmaterialien : Alterungsverhalten auf Basis von peroxidisch vernetztem EPDM}, series = {Kautschuk, Gummi, Kunststoffe : KGK}, volume = {63}, journal = {Kautschuk, Gummi, Kunststoffe : KGK}, number = {9}, isbn = {0948-3276}, pages = {350 -- 360}, year = {2010}, language = {de} } @article{HansScheerRiedletal.2004, author = {Hans, Stefan and Scheer, Nico and Riedl, Iris and Weiz{\"a}cker, Elisabeth von and Blader, Patrick and Campos-Ortega, Jos{\´e} A.}, title = {her3, a zebrafish member of the hairy-E(spl) family, is repressed by Notch signalling}, series = {Development}, volume = {131}, journal = {Development}, number = {12}, issn = {1477-9129}, doi = {10.1242/dev.01167}, pages = {2957 -- 2969}, year = {2004}, language = {en} } @article{KotterHammon1984, author = {Kotter, Michael and Hammon, Ulrich}, title = {Herstellung von Formk{\"o}rpern mit definierter Porenstruktur / Ulrich Hammon ; Michael Kotter}, series = {Chemie - Ingenieur - Technik. 56 (1984), H. 6}, journal = {Chemie - Ingenieur - Technik. 56 (1984), H. 6}, isbn = {0009-286X}, pages = {455 -- 463}, year = {1984}, language = {de} } @article{Kotter1983, author = {Kotter, Michael}, title = {Herstellung von Tr{\"a}nkkatalysatoren als verfahrenstechnische Aufgabe}, series = {Chemie - Ingenieur - Technik. 55 (1983), H. 3}, journal = {Chemie - Ingenieur - Technik. 55 (1983), H. 3}, isbn = {0009-286X}, pages = {179 -- 185}, year = {1983}, language = {de} } @article{KotterKirchRiekert1984, author = {Kotter, Michael and Kirch, M. and Riekert, L.}, title = {Herstellung von Tr{\"a}nkkatalysatoren mit Nickel als Aktivkomponente auf por{\"o}sen Tr{\"a}gern / R. Kirch ; M. Kotter ; L. Riekert}, series = {Chemiker-Zeitung. 108 (1984), H. 4}, journal = {Chemiker-Zeitung. 108 (1984), H. 4}, isbn = {0009-2894}, pages = {121 -- 129}, year = {1984}, language = {de} }