@inproceedings{BreuerGuthmannSchoeningetal.2017, author = {Breuer, Lars and Guthmann, Eric and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Light-Stimulated Hydrogels with Incorporated Graphene Oxide as Actuator Material for Flow Control in Microfluidic Applications}, series = {Proceedings Eurosensors 2017 Conference, Paris, France, 3-6 September 2017}, booktitle = {Proceedings Eurosensors 2017 Conference, Paris, France, 3-6 September 2017}, doi = {10.3390/proceedings1040524}, pages = {1 -- 4}, year = {2017}, language = {en} } @incollection{GeislerPieper2017, author = {Geisler, Simon and Pieper, Martin}, title = {Mathematik PLuS als E-Book. Kann ein E-Book zur Ingenieursmathematik alle Lerntypen ansprechen?}, series = {Das elektronische Schulbuch 2016}, booktitle = {Das elektronische Schulbuch 2016}, publisher = {LIT Verlag}, address = {Berlin}, isbn = {978-3-643-13475-2}, pages = {99 -- 111}, year = {2017}, language = {de} } @book{Pieper2017, author = {Pieper, Martin}, title = {Mathematische Optimierung: Eine Einf{\"u}hrung in die kontinuierliche Optimierung mit Beispielen}, publisher = {Springer Fachmedien}, address = {Wiesbaden}, isbn = {978-3-658-16975-6}, doi = {10.1007/978-3-658-16975-6}, pages = {IX, 53 S. 20 Abb.}, year = {2017}, language = {de} } @article{LiuSchaapBallemansetal.2017, author = {Liu, Z. and Schaap, K. S. and Ballemans, L. and de Blois, E. and Rohde, M. and Paulßen, Elisabeth}, title = {Measurement of reaction kinetics of [177Lu]Lu-DOTA-TATE using a microfluidic system}, series = {Dalton Transactions}, volume = {46}, journal = {Dalton Transactions}, number = {42}, issn = {1477-9234}, doi = {10.1039/C7DT01830D}, pages = {14669 -- 14676}, year = {2017}, language = {en} } @article{SeifarthGrosseGrossmannetal.2017, author = {Seifarth, Volker and Grosse, Joachim O. and Grossmann, Matthias and Janke, Heinz Peter and Arndt, Patrick and Koch, Sabine and Epple, Matthias and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation}, series = {Journal of Biomaterials Applications}, volume = {32}, journal = {Journal of Biomaterials Applications}, number = {3}, publisher = {Sage}, address = {London}, issn = {1530-8022}, doi = {10.1177/0885328217723178}, pages = {321 -- 330}, year = {2017}, language = {en} } @incollection{PieperWaehlisch2017, author = {Pieper, Martin and W{\"a}hlisch, Georg}, title = {Mehrwert von E-Learning durch f{\"a}cher{\"u}bergreifenden Einsatz}, series = {Teaching is Touching the Future \& ePS 2016 - Kompetenzorientiertes Lehren, Lernen und Pr{\"u}fen}, booktitle = {Teaching is Touching the Future \& ePS 2016 - Kompetenzorientiertes Lehren, Lernen und Pr{\"u}fen}, publisher = {UVW Universit{\"a}tsverlag Webler}, address = {Bielefeld}, isbn = {978-3-946017-05-9}, pages = {193 -- 196}, year = {2017}, language = {de} } @article{NiemuellerKarrasFerrein2017, author = {Niemueller, Tim and Karras, Ulrich and Ferrein, Alexander}, title = {Meisterschaft der Maschinen: Die Industrial Logistic Liga}, series = {C´t Magazin f{\"u}r Computertechnik}, journal = {C´t Magazin f{\"u}r Computertechnik}, number = {26}, year = {2017}, language = {de} } @inproceedings{SchreiberKraftZuendorf2017, author = {Schreiber, Marc and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Metrics driven research collaboration: focusing on common project goals continuously}, series = {Proceedings : 2017 IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Practice : SER\&IP 2017 : 21 May 2017 Buenos Aires, Argentina}, booktitle = {Proceedings : 2017 IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Practice : SER\&IP 2017 : 21 May 2017 Buenos Aires, Argentina}, editor = {Bilof, Randall}, publisher = {IEEE Press}, address = {Piscataway, NJ}, isbn = {978-1-5386-2797-6}, doi = {10.1109/SER-IP.2017..6}, pages = {41 -- 47}, year = {2017}, language = {en} } @inproceedings{CarzanaDachwaldNoomen2017, author = {Carzana, Livio and Dachwald, Bernd and Noomen, Ron}, title = {Model and trajectory optimization for an ideal laser-enhanced solar sail}, series = {68th International Astronautical Congress}, booktitle = {68th International Astronautical Congress}, year = {2017}, abstract = {A laser-enhanced solar sail is a solar sail that is not solely propelled by solar radiation but additionally by a laser beam that illuminates the sail. This way, the propulsive acceleration of the sail results from the combined action of the solar and the laser radiation pressure onto the sail. The potential source of the laser beam is a laser satellite that coverts solar power (in the inner solar system) or nuclear power (in the outer solar system) into laser power. Such a laser satellite (or many of them) can orbit anywhere in the solar system and its optimal orbit (or their optimal orbits) for a given mission is a subject for future research. This contribution provides the model for an ideal laser-enhanced solar sail and investigates how a laser can enhance the thrusting capability of such a sail. The term "ideal" means that the solar sail is assumed to be perfectly reflecting and that the laser beam is assumed to have a constant areal power density over the whole sail area. Since a laser beam has a limited divergence, it can provide radiation pressure at much larger solar distances and increase the radiation pressure force into the desired direction. Therefore, laser-enhanced solar sails may make missions feasible, that would otherwise have prohibitively long flight times, e.g. rendezvous missions in the outer solar system. This contribution will also analyze exemplary mission scenarios and present optimial trajectories without laying too much emphasis on the design and operations of the laser satellites. If the mission studies conclude that laser-enhanced solar sails would have advantages with respect to "traditional" solar sails, a detailed study of the laser satellites and the whole system architecture would be the second next step}, language = {en} } @inproceedings{MoshiriKahakPfaffGaebeletal.2017, author = {Moshiri-Kahak, Amir and Pfaff, Raphael and G{\"a}bel, Markus and Reich, Alexander}, title = {Modellierung der Adh{\"a}sionsfl{\"a}che im Rad-Schiene-Kontakt unter Einsatz von reibwertverbessernden Mitteln}, series = {15. Internationale Schienenfahrzeugtagung Rad Schiene 2017, Dresden, M{\"a}rz 2017}, booktitle = {15. Internationale Schienenfahrzeugtagung Rad Schiene 2017, Dresden, M{\"a}rz 2017}, pages = {3 Seiten}, year = {2017}, language = {de} } @article{HorbachDuongStaat2017, author = {Horbach, Andreas and Duong, Minh Tuan and Staat, Manfred}, title = {Modelling of compressible and orthotropic surgical mesh implants based on optical deformation measurement}, series = {Journal of the mechanical behavior of biomedical materials}, volume = {74}, journal = {Journal of the mechanical behavior of biomedical materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1751-6161}, doi = {10.1016/j.jmbbm.2017.06.012}, pages = {400 -- 410}, year = {2017}, language = {en} } @inproceedings{PfaffMoshiriReichetal.2017, author = {Pfaff, Raphael and Moshiri, Amir and Reich, Alexander and G{\"a}bel, Markus}, title = {Modelling of the effect of sanding on the wheel-rail adhesion area}, series = {First International Conference on Rail Transportation}, booktitle = {First International Conference on Rail Transportation}, pages = {1 -- 7}, year = {2017}, language = {en} } @article{WerkhausenAlbrachtCroninetal.2017, author = {Werkhausen, Amelie and Albracht, Kirsten and Cronin, Neil J. and Meier, Rahel and Mojsen-Moeller, Jens and Seynnes, Olivier R.}, title = {Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task}, series = {Journal of Experimental Biology}, volume = {220}, journal = {Journal of Experimental Biology}, number = {22}, issn = {0022-0949}, doi = {10.1242/jeb.164111}, pages = {4141 -- 4149}, year = {2017}, language = {en} } @article{MeyerHentschkeHageretal.2017, author = {Meyer, Jan and Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils and Karimi-Varzaneh, Hossein Ali}, title = {Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica-Silica Contact in Filled Rubber}, series = {Macromolecules}, volume = {50}, journal = {Macromolecules}, number = {17}, issn = {1520-5835}, doi = {10.1021/acs.macromol.7b00947}, pages = {6679 -- 6689}, year = {2017}, language = {en} } @inproceedings{RajanKubalskiAltayetal.2017, author = {Rajan, Sreelakshmy and Kubalski, Thomas and Altay, Okyay and Dalguer, Luis A and Butenweg, Christoph}, title = {Multi-dimensional fragility analysis of a RC building with components using response surface method}, series = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, booktitle = {24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017}, publisher = {International Assn for Structural Mechanics in Reactor Technology (IASMiRT)}, address = {Raleigh, USA}, isbn = {9781510856776}, pages = {3126 -- 3135}, year = {2017}, abstract = {Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples.}, language = {en} } @inproceedings{SchmidtsBoltesKraftetal.2017, author = {Schmidts, Oliver and Boltes, Maik and Kraft, Bodo and Schreiber, Marc}, title = {Multi-pedestrian tracking by moving Bluetooth-LE beacons and stationary receivers}, series = {2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan}, booktitle = {2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan}, pages = {1 -- 4}, year = {2017}, language = {en} } @inproceedings{AltherrEdererFarnetaneetal.2017, author = {Altherr, Lena and Ederer, Thorsten and Farnetane, Lucas S. and P{\"o}ttgen, Philipp and Verg{\´e}, Angela and Pelz, Peter F.}, title = {Multicriterial design of a hydrostatic transmission system via mixed-integer programming}, series = {Operations Research Proceedings 2015}, booktitle = {Operations Research Proceedings 2015}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42901-4}, doi = {10.1007/978-3-319-42902-1_41}, pages = {301 -- 307}, year = {2017}, abstract = {In times of planned obsolescence the demand for sustainability keeps growing. Ideally, a technical system is highly reliable, without failures and down times due to fast wear of single components. At the same time, maintenance should preferably be limited to pre-defined time intervals. Dispersion of load between multiple components can increase a system's reliability and thus its availability inbetween maintenance points. However, this also results in higher investment costs and additional efforts due to higher complexity. Given a specific load profile and resulting wear of components, it is often unclear which system structure is the optimal one. Technical Operations Research (TOR) finds an optimal structure balancing availability and effort. We present our approach by designing a hydrostatic transmission system.}, language = {en} } @inproceedings{SchoppHeuermannMarso2017, author = {Schopp, Christoph and Heuermann, Holger and Marso, Michel}, title = {Multiphysical Study of an Atmospheric Microwave Argon Plasma Jet}, series = {IEEE Transactions on Plasma Science}, volume = {45}, booktitle = {IEEE Transactions on Plasma Science}, number = {6}, publisher = {IEEE}, issn = {1939-9375}, doi = {10.1109/TPS.2017.2692735}, pages = {932 -- 937}, year = {2017}, language = {en} } @inproceedings{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple NEA rendezvous mission: Solar sailing options}, series = {Fourth International Symposium on Solar Sailing}, booktitle = {Fourth International Symposium on Solar Sailing}, pages = {1 -- 11}, year = {2017}, abstract = {The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous asteroid for the Earth stipulated the interest in NEA exploration. Close-up observations of these objects will increase drastically our knowledge about the overall NEA population. For this reason, a multiple NEA rendezvous mission through solar sailing is investigated, taking advantage of the propellantless nature of this groundbreaking propulsion technology. Considering a spacecraft based on the DLR/ESA Gossamer technology, this work focuses on the search of possible sequences of NEA encounters. The effectiveness of this approach is demonstrated through a number of fully-optimized trajectories. The results show that it is possible to visit five NEAs within 10 years with near-term solar-sail technology. Moreover, a study on a reduced NEA database demonstrates the reliability of the approach used, showing that 58\% of the sequences found with an approximated trajectory model can be converted into real solar-sail trajectories. Lastly, this second study shows the effectiveness of the proposed automatic optimization algorithm, which is able to find solutions for a large number of mission scenarios without any input required from the user.}, language = {en} } @article{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple near-earth asteroid rendezvous mission: Solar-sailing options}, series = {Advances in Space Research}, journal = {Advances in Space Research}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2017.10.017}, year = {2017}, language = {en} }