@article{BirgelLeschingerWegmannetal.2018, author = {Birgel, Stefan and Leschinger, Tim and Wegmann, Kilian and Staat, Manfred}, title = {Calculation of muscle forces and joint reaction loads in the shoulder area via an OpenSim based computer model}, series = {tm - Technisches Messen}, volume = {85}, journal = {tm - Technisches Messen}, number = {5}, publisher = {De Gruyter}, address = {Berlin}, issn = {2196-7113}, doi = {10.1515/teme-2017-0114}, pages = {321 -- 330}, year = {2018}, abstract = {Using the OpenSim software and verified anatomical data, a computer model for the calculation of biomechanical parameters is developed and used to determine the effect of a reattachment of the Supraspinatus muscle with a medial displacement of the muscle attachment point, which may be necessary for a rupture of the supraspinatus tendon. The results include the influence of the operation on basic biomechanical parameters such as the lever arm, as well as the calculated the muscle activations for the supraspinatus and deltoid. In addition, the influence on joint stability is examined by an analysis of the joint reaction force. The study provides a detailed description of the used model, as well as medical findings to a reattachment of the supraspinatus. Mit der Software OpenSim und {\"u}berpr{\"u}ften anatomischen Daten wird ein Computermodell zur Berechnung von biomechanischen Parametern entwickelt und genutzt, um den Effekt einer Refixierung des Supraspinatusmuskels mit einer medialen Verschiebung des Muskelansatzpunktes zu ermitteln, wie sie unter anderem nach einem Riss der Supraspinatussehne notwendig sein kann. Die Ergebnisse umfassen hierbei den Einfluss der Operation auf grundlegende biomechanische Parameter wie den Hebelarm sowie die berechneten Muskelaktivierungen f{\"u}r den Supraspinatus und Deltoideus. Zus{\"a}tzlich wird der Einfluss auf die Gelenkstabilit{\"a}t betrachtet und durch eine Analyse der Gelenkreaktionskraft untersucht. Die Studie bietet eine detaillierte Beschreibung des genutzten Modells, sowie medizinische Erkenntnisse zu einer Refixierung des Supraspinatus.}, language = {en} } @article{BelavyAlbrachtBruggemannetal.2016, author = {Belavy, Daniel L. and Albracht, Kirsten and Bruggemann, Gert-Peter and Vergroesen, Pieter-Paul A. and Dieen, Jaap H. van}, title = {Can exercise positively influence the intervertebral disc?}, series = {Sports Medicine}, volume = {46}, journal = {Sports Medicine}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1179-2035}, doi = {10.1007/s40279-015-0444-2}, pages = {473 -- 485}, year = {2016}, abstract = {To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a 'critical period' for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.}, language = {en} } @article{KotliarLanzl2011, author = {Kotliar, Konstantin and Lanzl, Ines M.}, title = {Can vascular function be assessed by the interpretation of retinal vascular diameter changes?}, series = {Investigative Ophthalmology \& Visual Science, IOVS. 52 (2011), H. 1}, journal = {Investigative Ophthalmology \& Visual Science, IOVS. 52 (2011), H. 1}, publisher = {ARVO}, address = {Rockville, Md.}, isbn = {0146-0404}, pages = {635 -- 636}, year = {2011}, language = {en} } @article{TemizArtmannYalcinResmietal.2002, author = {Temiz Artmann, Ayseg{\"u}l and Yalcin, Ozlem and Resmi, Halil and Baskurt, Oguz K.}, title = {Can white blood cell activation be one of the major factors that affect hemorheological parameters during and after exercise?}, series = {Clinical Hemorheology and Microcirculation. 26 (2002), H. 3}, journal = {Clinical Hemorheology and Microcirculation. 26 (2002), H. 3}, isbn = {1386-0291}, pages = {189 -- 193}, year = {2002}, language = {en} } @article{JanThimoBauerBieleetal.2019, author = {Jan Thimo, Grundmann and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, David}, title = {Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs}, series = {Acta Astronautica}, volume = {156}, journal = {Acta Astronautica}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0094-5765}, doi = {10.1016/j.actaastro.2018.03.019}, pages = {330 -- 362}, year = {2019}, language = {en} } @article{BehbahaniBehrAroraetal.2006, author = {Behbahani, Mehdi and Behr, M. and Arora, D. and Coronado, O. and Pasquali, M.}, title = {CFD Analysis of MicroMed Debakey Pump and Hemolysis Prediction / Behbahani, M. ; Behr, M. ; Arora, D. ; Coronado, O. ; Pasquali, M.}, series = {Artificial Organs. 30 (2006), H. 11}, journal = {Artificial Organs. 30 (2006), H. 11}, isbn = {1525-1594}, pages = {A45 -- A46}, year = {2006}, language = {en} } @article{NeumaierWeissVeldemanetal.2021, author = {Neumaier, Felix and Weiss, Miriam and Veldeman, Michael and Kotliar, Konstantin and Wiesmann, Martin and Schulze-Steinen, Henna and H{\"o}llig, Anke and Clusmann, Hans and Schubert, Gerrit Alexander and Albanna, Walid}, title = {Changes in endogenous daytime melatonin levels after aneurysmal subarachnoid hemorrhage - preliminary findings from an observational cohort study}, series = {Clinical Neurology and Neurosurgery}, volume = {208}, journal = {Clinical Neurology and Neurosurgery}, number = {Article No.: 106870}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0303-8467}, doi = {10.1016/j.clineuro.2021.106870}, year = {2021}, abstract = {Aneurysmal subarachnoid hemorrhage (aSAH) is associated with early and delayed brain injury due to several underlying and interrelated processes, which include inflammation, oxidative stress, endothelial, and neuronal apoptosis. Treatment with melatonin, a cytoprotective neurohormone with anti-inflammatory, anti-oxidant and anti-apoptotic effects, has been shown to attenuate early brain injury (EBI) and to prevent delayed cerebral vasospasm in experimental aSAH models. Less is known about the role of endogenous melatonin for aSAH outcome and how its production is altered by the pathophysiological cascades initiated during EBI. In the present observational study, we analyzed changes in melatonin levels during the first three weeks after aSAH.}, language = {en} } @article{WaldvogelFreylerHelmetal.2023, author = {Waldvogel, Janice and Freyler, Kathrin and Helm, Michael and Monti, Elena and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco V. and Ritzmann, Ramona and Albracht, Kirsten}, title = {Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks}, series = {Journal of Applied Physiology}, volume = {134}, journal = {Journal of Applied Physiology}, number = {1}, publisher = {American Physiological Society}, address = {Bethesda, Md.}, issn = {1522-1601 (Onlineausgabe)}, doi = {10.1152/japplphysiol.00279.2022}, pages = {190 -- 202}, year = {2023}, abstract = {This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.}, language = {en} } @article{FeuchtSchoenbachLanzletal.2013, author = {Feucht, Nikolaus and Sch{\"o}nbach, Etienne Michael and Lanzl, Ines and Kotliar, Konstantin and Lohmann, Chris Patrick and Maier, Mathias}, title = {Changes in the foveal microstructure after intravitreal bevacizumab application in patients with retinal vascular disease}, series = {Clinical Ophthalmology}, volume = {7}, journal = {Clinical Ophthalmology}, publisher = {Dove Medical Press}, address = {Auckland, New Zealand}, issn = {1177-5483}, pages = {173 -- 178}, year = {2013}, language = {en} } @article{ArtmannBurnsCanavesetal.2004, author = {Artmann, Gerhard and Burns, Laura and Canaves, Jaume M. and Temiz Artmann, Ayseg{\"u}l}, title = {Circular dichroism spectra of human hemoglobin reveal a reversible structural transition at body temperature}, series = {European Biophysics Journal. 33 (2004), H. 6}, journal = {European Biophysics Journal. 33 (2004), H. 6}, isbn = {1432-1017}, pages = {490 -- 496}, year = {2004}, language = {en} } @article{DigelTemizArtmannNishikawaetal.2004, author = {Digel, Ilya and Temiz Artmann, Ayseg{\"u}l and Nishikawa, K. and Artmann, Gerhard}, title = {Cluster air-ion effects on bacteria and moulds}, series = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, journal = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, isbn = {0932-4666}, pages = {1040 -- 1041}, year = {2004}, language = {en} } @article{AngermannGuenthnerHanssenetal.2022, author = {Angermann, Susanne and G{\"u}nthner, Roman and Hanssen, Henner and Lorenz, Georg and Braunisch, Matthias C. and Steubl, Dominik and Matschkal, Julia and Kemmner, Stephan and Hausinger, Renate and Block, Zenonas and Haller, Bernhard and Heemann, Uwe and Kotliar, Konstantin and Grimmer, Timo and Schmaderer, Christoph}, title = {Cognitive impairment and microvascular function in end-stage renal disease}, series = {International Journal of Methods in Psychiatric Research (MPR)}, volume = {31}, journal = {International Journal of Methods in Psychiatric Research (MPR)}, number = {2}, publisher = {Wiley}, issn = {1049-8931 (Print)}, doi = {10.1002/mpr.1909}, pages = {1 -- 10}, year = {2022}, abstract = {Objective Hemodialysis patients show an approximately threefold higher prevalence of cognitive impairment compared to the age-matched general population. Impaired microcirculatory function is one of the assumed causes. Dynamic retinal vessel analysis is a quantitative method for measuring neurovascular coupling and microvascular endothelial function. We hypothesize that cognitive impairment is associated with altered microcirculation of retinal vessels. Methods 152 chronic hemodialysis patients underwent cognitive testing using the Montreal Cognitive Assessment. Retinal microcirculation was assessed by Dynamic Retinal Vessel Analysis, which carries out an examination recording retinal vessels' reaction to a flicker light stimulus under standardized conditions. Results In unadjusted as well as in adjusted linear regression analyses a significant association between the visuospatial executive function domain score of the Montreal Cognitive Assessment and the maximum arteriolar dilation as response of retinal arterioles to the flicker light stimulation was obtained. Conclusion This is the first study determining retinal microvascular function as surrogate for cerebral microvascular function and cognition in hemodialysis patients. The relationship between impairment in executive function and reduced arteriolar reaction to flicker light stimulation supports the involvement of cerebral small vessel disease as contributing factor for the development of cognitive impairment in this patient population and might be a target for noninvasive disease monitoring and therapeutic intervention.}, language = {en} } @article{KnoxBruggemannGossmannetal.2020, author = {Knox, Ronald and Bruggemann, Andrea and Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Fertig, Niels and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {Combining physiological relevance and throughput for in vitro cardiac contractility measurement}, series = {Biophysical Journal}, volume = {118}, journal = {Biophysical Journal}, number = {Issue 3, Supplement 1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0006-3495}, doi = {10.1016/j.bpj.2019.11.3104}, pages = {570a}, year = {2020}, abstract = {Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these.}, language = {en} } @article{KetelhutGoellBraunsteinetal.2018, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bj{\"o}rn and Albracht, Kirsten and Abel, Dirk}, title = {Comparison of different training algorithms for the leg extension training with an industrial robot}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0005}, pages = {17 -- 20}, year = {2018}, abstract = {In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot's acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption.}, language = {en} } @article{SchierenKleinschmidtSchmutzetal.2019, author = {Schieren, Mark and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Gatzweiler, Karl-Heinz and Staat, Manfred and Wappler, Frank and Defosse, Jerome}, title = {Comparison of forces acting on maxillary incisors during tracheal intubation with different laryngoscopy techniques: a blinded manikin study}, series = {Anaesthesia}, volume = {74}, journal = {Anaesthesia}, number = {12}, publisher = {Wiley-Blackwell}, address = {Oxford}, isbn = {1365-2044}, doi = {10.1111/anae.14815}, year = {2019}, language = {en} } @article{NguyenXuanRabczukNguyenThoietal.2011, author = {Nguyen-Xuan, H. and Rabczuk, T. and Nguyen-Thoi, T. and Tran, Thanh Ngoc and Nguyen-Thanh, N.}, title = {Computation of limit and shakedown loads using a node-based smoothed finite element method}, series = {International Journal for Numerical Methods in Engineering}, volume = {90}, journal = {International Journal for Numerical Methods in Engineering}, number = {3}, publisher = {Wiley}, address = {Weinheim}, issn = {1097-0207}, doi = {10.1002/nme.3317}, pages = {287 -- 310}, year = {2011}, abstract = {This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node-based smoothed FEM in combination with a primal-dual algorithm. An associated primal-dual form based on the von Mises yield criterion is adopted. The primal-dual algorithm together with a Newton-like iteration are then used to solve this associated primal-dual form to determine simultaneously both approximate upper and quasi-lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods.}, language = {en} } @article{BehbahaniWalugaArltetal.2008, author = {Behbahani, Mehdi and Waluga, C. and Arlt, S. and Behr, M. and Mottaghy, K.}, title = {Computational Analysis of Platelet Aggregation in a Taylor-Couette System}, series = {The International Journal of Artificial Organs. 31 (2008), H. 7}, journal = {The International Journal of Artificial Organs. 31 (2008), H. 7}, isbn = {0391-3988}, pages = {643}, year = {2008}, language = {en} } @article{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Computational comparison of different textile implants to correct apical prolapse in females}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, doi = {10.1515/cdbme-2018-0159}, pages = {661 -- 664}, year = {2018}, abstract = {Prosthetic textile implants of different shapes, sizes and polymers are used to correct the apical prolapse after hysterectomy (removal of the uterus). The selection of the implant before or during minimally invasive surgery depends on the patient's anatomical defect, intended function after reconstruction and most importantly the surgeon's preference. Weakness or damage of the supporting tissues during childbirth, menopause or previous pelvic surgeries may put females in higher risk of prolapse. Numerical simulations of reconstructed pelvic floor with weakened tissues and organ supported by textile product models: DynaMesh®-PRS soft, DynaMesh®-PRP soft and DynaMesh®-CESA from FEG Textiletechnik mbH, Germany are compared.}, language = {en} } @article{MalinowskiFournierHorbachetal.2022, author = {Malinowski, Daniel and Fournier, Yvan and Horbach, Andreas and Frick, Michael and Magliani, Mirko and Kalverkamp, Sebastian and Hildinger, Martin and Spillner, Jan and Behbahani, Mehdi and Hima, Flutura}, title = {Computational fluid dynamics analysis of endoluminal aortic perfusion}, series = {Perfusion}, volume = {0}, journal = {Perfusion}, number = {0}, publisher = {Sage}, address = {London}, issn = {1477-111X}, doi = {10.1177/02676591221099809}, pages = {1 -- 8}, year = {2022}, abstract = {Introduction: In peripheral percutaneous (VA) extracorporeal membrane oxygenation (ECMO) procedures the femoral arteries perfusion route has inherent disadvantages regarding poor upper body perfusion due to watershed. With the advent of new long flexible cannulas an advancement of the tip up to the ascending aorta has become feasible. To investigate the impact of such long endoluminal cannulas on upper body perfusion, a Computational Fluid Dynamics (CFD) study was performed considering different support levels and three cannula positions. Methods: An idealized literature-based- and a real patient proximal aortic geometry including an endoluminal cannula were constructed. The blood flow was considered continuous. Oxygen saturation was set to 80\% for the blood coming from the heart and to 100\% for the blood leaving the cannula. 50\% and 90\% venoarterial support levels from the total blood flow rate of 6 l/min were investigated for three different positions of the cannula in the aortic arch. Results: For both geometries, the placement of the cannula in the ascending aorta led to a superior oxygenation of all aortic blood vessels except for the left coronary artery. Cannula placements at the aortic arch and descending aorta could support supra-aortic arteries, but not the coronary arteries. All positions were able to support all branches with saturated blood at 90\% flow volume. Conclusions: In accordance with clinical observations CFD analysis reveals, that retrograde advancement of a long endoluminal cannula can considerably improve the oxygenation of the upper body and lead to oxygen saturation distributions similar to those of a central cannulation.}, language = {en} } @article{FrotscherKochStaat2015, author = {Frotscher, Ralf and Koch, Jan-Peter and Staat, Manfred}, title = {Computational investigation of drug action on human-induced stem cell derived cardiomyocytes}, series = {Journal of biomechanical engineering}, volume = {Vol. 137}, journal = {Journal of biomechanical engineering}, number = {iss. 7}, publisher = {ASME}, address = {New York}, issn = {1528-8951 (E-Journal); 0148-0731 (Print)}, doi = {10.1115/1.4030173}, pages = {071002-1 -- 071002-7}, year = {2015}, language = {en} }