@inproceedings{WalterElsenMuelleretal.1999, author = {Walter, Peter and Elsen, Ingo and M{\"u}ller, Holger and Kraiss, Karl-Friedrich}, title = {3D object recognition with a specialized mixtures of experts architecture}, series = {IJCNN'99. International Joint Conference on Neural Networks. Proceedings}, booktitle = {IJCNN'99. International Joint Conference on Neural Networks. Proceedings}, publisher = {IEEE}, address = {New York}, isbn = {0-7803-5529-6}, issn = {1098-7576}, doi = {10.1109/IJCNN.1999.836243}, pages = {3563 -- 3568}, year = {1999}, abstract = {Aim of the AXON2 project (Adaptive Expert System for Object Recogniton using Neuml Networks) is the development of an object recognition system (ORS) capable of recognizing isolated 3d objects from arbitrary views. Commonly, classification is based on a single feature extracted from the original image. Here we present an architecture adapted from the Mixtures of Eaqerts algorithm which uses multiple neuml networks to integmte different features. During tmining each neural network specializes in a subset of objects or object views appropriate to the properties of the corresponding feature space. In recognition mode the system dynamically chooses the most relevant features and combines them with maximum eficiency. The remaining less relevant features arz not computed and do therefore not decelerate the-recognition process. Thus, the algorithm is well suited for ml-time applications.}, language = {en} } @article{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Calculation Methodology for Predicting Exhaust Mass Flows and Exhaust Temperature Profiles for Heavy-Duty Vehicles}, series = {SAE International Journal of Commercial Vehicles}, volume = {13}, journal = {SAE International Journal of Commercial Vehicles}, number = {2}, publisher = {SAE International}, address = {Warrendale, Pa.}, issn = {1946-3928}, doi = {10.4271/02-13-02-0009}, pages = {129 -- 143}, year = {2020}, abstract = {The predictive control of commercial vehicle energy management systems, such as vehicle thermal management or waste heat recovery (WHR) systems, are discussed on the basis of information sources from the field of environment recognition and in combination with the determination of the vehicle system condition. In this article, a mathematical method for predicting the exhaust gas mass flow and the exhaust gas temperature is presented based on driving data of a heavy-duty vehicle. The prediction refers to the conditions of the exhaust gas at the inlet of the exhaust gas recirculation (EGR) cooler and at the outlet of the exhaust gas aftertreatment system (EAT). The heavy-duty vehicle was operated on the motorway to investigate the characteristic operational profile. In addition to the use of road gradient profile data, an evaluation of the continuously recorded distance signal, which represents the distance between the test vehicle and the road user ahead, is included in the prediction model. Using a Fourier analysis, the trajectory of the vehicle speed is determined for a defined prediction horizon. To verify the method, a holistic simulation model consisting of several hierarchically structured submodels has been developed. A map-based submodel of a combustion engine is used to determine the EGR and EAT exhaust gas mass flows and exhaust gas temperature profiles. All simulation results are validated on the basis of the recorded vehicle and environmental data. Deviations from the predicted values are analyzed and discussed.}, language = {en} } @inproceedings{FingerdeVriesVosetal.2020, author = {Finger, Felix and de Vries, Reynard and Vos, Roelof and Braun, Carsten and Bil, Cees}, title = {A comparison of hybrid-electric aircraft sizing methods}, series = {AIAA Scitech 2020 Forum}, booktitle = {AIAA Scitech 2020 Forum}, doi = {10.2514/6.2020-1006}, pages = {31 Seiten}, year = {2020}, language = {en} } @article{UlmerBraunChengetal.2023, author = {Ulmer, Jessica and Braun, Carsten and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation}, series = {International Journal of Production Research}, journal = {International Journal of Production Research}, publisher = {Taylor \& Francis}, issn = {0020-7543 (Print)}, doi = {10.1080/00207543.2023.2166140}, year = {2023}, abstract = {Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers' cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.}, language = {en} } @inproceedings{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude}, series = {Deutscher Luft- und Raumfahrtkongress 2019, „Luft- und Raumfahrt - technologische Br{\"u}cke in die Zukunft", Darmstadt, 30. September bis 2. Oktober 2019}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, „Luft- und Raumfahrt - technologische Br{\"u}cke in die Zukunft", Darmstadt, 30. September bis 2. Oktober 2019}, publisher = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt - Lilienthal-Oberth e.V}, address = {Bonn}, doi = {10.25967/490162}, pages = {13 Seiten}, year = {2020}, language = {en} } @article{KhayyamJamaliBabHadiasharetal.2020, author = {Khayyam, Hamid and Jamali, Ali and Bab-Hadiashar, Alireza and Esch, Thomas and Ramakrishna, Seeram and Jalili, Mahdi and Naebe, Minoo}, title = {A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modeling with Application in Industry 4.0}, series = {IEEE Access}, volume = {8}, journal = {IEEE Access}, number = {Art. 9108222}, publisher = {IEEE}, address = {New York, NY}, issn = {2169-3536}, doi = {10.1109/ACCESS.2020.2999898}, pages = {111381 -- 111393}, year = {2020}, abstract = {To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements.}, language = {en} } @article{KhayyamJamaliBabHadiasharetal.2020, author = {Khayyam, Hamid and Jamali, Ali and Bab-Hadiashar, Alireza and Esch, Thomas and Ramakrishna, Seeram and Jalil, Mahdi and Naebe, Minoo}, title = {A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modelling with Application in Industry 4.0}, series = {IEEE Access}, journal = {IEEE Access}, publisher = {IEEE}, address = {New York, NY}, isbn = {2169-3536}, doi = {10.1109/ACCESS.2020.2999898}, pages = {1 -- 12}, year = {2020}, abstract = {To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements.}, language = {en} } @inproceedings{Elsen1998, author = {Elsen, Ingo}, title = {A pixel based approach to view based object recognition with self-organizing neural networks}, series = {IECON'98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society}, booktitle = {IECON'98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society}, publisher = {IEEE}, address = {New York}, isbn = {0-7803-4503-7}, doi = {10.1109/IECON.1998.724032}, pages = {2040 -- 2044}, year = {1998}, abstract = {This paper addresses the pixel based classification of three dimensional objects from arbitrary views. To perform this task a coding strategy, inspired by the biological model of human vision, for pixel data is described. The coding strategy ensures that the input data is invariant against shift, scale and rotation of the object in the input domain. The image data is used as input to a class of self organizing neural networks, the Kohonen-maps or self-organizing feature maps (SOFM). To verify this approach two test sets have been generated: the first set, consisting of artificially generated images, is used to examine the classification properties of the SOFMs; the second test set examines the clustering capabilities of the SOFM when real world image data is applied to the network after it has been preprocessed to be invariant against shift, scale and rotation. It is shown that the clustering capability of the SOFM is strongly dependant on the invariance coding of the images.}, language = {en} } @article{BoehnischBraunMuscarelloetal.2023, author = {B{\"o}hnisch, Nils and Braun, Carsten and Muscarello, Vincenzo and Marzocca, Pier}, title = {A sensitivity study on aeroelastic instabilities of slender wings with a large propeller}, series = {AIAA SCITECH 2023 Forum}, journal = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, doi = {10.2514/6.2023-1893}, pages = {1 -- 14}, year = {2023}, abstract = {Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan. These highly flexible dynamic systems can exhibit uncommon aeroelastic instabilities, which should be carefully investigated to ensure safe operation. The interaction between the propeller and the wing is of particular importance. It is known that whirl flutter is stabilized by wing motion and wing aerodynamics. This paper investigates the effect of a propeller onto wing flutter as a function of span position and mounting stiffness between the propeller and wing. The analysis of a comparison between a tractor and pusher configuration has shown that the coupled system is more stable than the standalone wing for propeller positions near the wing tip for both configurations. The wing fluttermechanism is mostly affected by the mass of the propeller and the resulting change in eigenfrequencies of the wing. For very weak mounting stiffnesses, whirl flutter occurs, which was shown to be stabilized compared to a standalone propeller due to wing motion. On the other hand, the pusher configuration is, as to be expected, the more critical configuration due to the attached mass behind the elastic axis.}, language = {de} } @article{BoehnischBraunMuscarelloetal.2024, author = {B{\"o}hnisch, Nils and Braun, Carsten and Muscarello, Vincenzo and Marzocca, Pier}, title = {About the wing and whirl flutter of a slender wing-propeller system}, series = {Journal of Aircraft}, journal = {Journal of Aircraft}, publisher = {American Institute of Aeronautics and Astronautics}, issn = {1533-3868}, doi = {10.2514/1.C037542}, pages = {1 -- 14}, year = {2024}, abstract = {Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing-propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing-propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing-propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis.}, language = {en} } @inproceedings{SchulzeMuehleisenFeyerl2018, author = {Schulze, Sven and M{\"u}hleisen, M. and Feyerl, G{\"u}nter}, title = {Adaptive energy management strategy for a heavy-duty truck with a P2-hybrid topology}, series = {18. Internationales Stuttgarter Symposium. Proceedings}, booktitle = {18. Internationales Stuttgarter Symposium. Proceedings}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-21194-3}, pages = {75 -- 89}, year = {2018}, language = {en} } @article{SchulzeFeyerlPischinger2023, author = {Schulze, Sven and Feyerl, G{\"u}nter and Pischinger, Stefan}, title = {Advanced ECMS for hybrid electric heavy-duty trucks with predictive battery discharge and adaptive operating strategy under real driving conditions}, series = {Energies}, volume = {16}, journal = {Energies}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16135171}, pages = {29 Seiten, Art. Nr.: 5171}, year = {2023}, abstract = {To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15\% more efficiently by 2025 and 30\% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2\% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks.}, language = {en} } @inproceedings{NowackRoethBuehrigPolaczeketal.2008, author = {Nowack, N. and R{\"o}th, Thilo and B{\"u}hrig-Polaczek, A. and Klaus, G.}, title = {Advanced Sheet Metal Components Reinforced by Light Metal Cast Structures}, series = {Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11]}, booktitle = {Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11]}, number = {2}, editor = {Hirsch, J{\"u}rgen}, isbn = {978-3-527-32367-8}, pages = {2374 -- 2381}, year = {2008}, language = {en} } @article{SchwagerFleschSchwarzboezletal.2022, author = {Schwager, Christian and Flesch, Robert and Schwarzb{\"o}zl, Peter and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e}}, title = {Advanced two phase flow model for transient molten salt receiver system simulation}, series = {Solar Energy}, volume = {232}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X (print)}, doi = {10.1016/j.solener.2021.12.065}, pages = {362 -- 375}, year = {2022}, abstract = {In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed.}, language = {en} } @article{WeiheErnstRoethetal.2013, author = {Weihe, Stefan and Ernst, Ansgar and R{\"o}th, Thilo and Proksch, Johannes}, title = {Aluminium-Stahl-Verbundguss im Nutzfahrzeugbau}, series = {ATZ - Automobiltechnische Zeitschrift}, volume = {115}, journal = {ATZ - Automobiltechnische Zeitschrift}, number = {4}, publisher = {Springer Fachmedien Wiesbaden}, issn = {2192-8800 (Online)}, pages = {312 -- 316}, year = {2013}, abstract = {In modernen Fahrzeugkarosserien der Großserie kommen zunehmend Materialmischbauweisen zur Anwendung. In Zusammenarbeit der Daimler AG, der Tower Automotive Holding GmbH, der Imperia GmbH sowie der Partnerunternehmen KSM Castings GmbH und Schaufler Tooling GmbH \& Co. KG wird das Leichtbaupotenzial von Aluminiumverbundguss-Stahlblech-Hybriden am Beispiel des vorderen Dachquertr{\"a}gers des Mercedes-Benz Viano/Vito ausf{\"u}hrlich untersucht.}, language = {de} } @inproceedings{SchubaHoefkenLinzbach2022, author = {Schuba, Marko and H{\"o}fken, Hans-Wilhelm and Linzbach, Sophie}, title = {An ICS Honeynet for Detecting and Analyzing Cyberattacks in Industrial Plants}, series = {2021 International Conference on Electrical, Computer and Energy Technologies (ICECET)}, booktitle = {2021 International Conference on Electrical, Computer and Energy Technologies (ICECET)}, publisher = {IEEE}, isbn = {978-1-6654-4231-2}, doi = {10.1109/ICECET52533.2021.9698746}, pages = {6 Seiten}, year = {2022}, abstract = {Cybersecurity of Industrial Control Systems (ICS) is an important issue, as ICS incidents may have a direct impact on safety of people or the environment. At the same time the awareness and knowledge about cybersecurity, particularly in the context of ICS, is alarmingly low. Industrial honeypots offer a cheap and easy to implement way to raise cybersecurity awareness and to educate ICS staff about typical attack patterns. When integrated in a productive network, industrial honeypots may not only reveal attackers early but may also distract them from the actual important systems of the network. Implementing multiple honeypots as a honeynet, the systems can be used to emulate or simulate a whole Industrial Control System. This paper describes a network of honeypots emulating HTTP, SNMP, S7communication and the Modbus protocol using Conpot, IMUNES and SNAP7. The nodes mimic SIMATIC S7 programmable logic controllers (PLCs) which are widely used across the globe. The deployed honeypots' features will be compared with the features of real SIMATIC S7 PLCs. Furthermore, the honeynet has been made publicly available for ten days and occurring cyberattacks have been analyzed}, language = {en} } @inproceedings{GedleSchmitzGielenetal.2022, author = {Gedle, Yibekal and Schmitz, Mark and Gielen, Hans and Schmitz, Pascal and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e} and Mahdi, Zahra and Caminos, Ricardo Alexander Chico and Dersch, J{\"u}rgen}, title = {Analysis of an integrated CSP-PV hybrid power plant}, series = {SolarPACES 2020}, booktitle = {SolarPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086236}, pages = {9 Seiten}, year = {2022}, abstract = {In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] - [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20\% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution.}, language = {en} } @inproceedings{DinghoferHartung2020, author = {Dinghofer, Kai and Hartung, Frank}, title = {Analysis of Criteria for the Selection of Machine Learning Frameworks}, series = {2020 International Conference on Computing, Networking and Communications (ICNC)}, booktitle = {2020 International Conference on Computing, Networking and Communications (ICNC)}, doi = {10.1109/ICNC47757.2020.9049650}, pages = {373 -- 377}, year = {2020}, language = {en} } @phdthesis{Elsen2000, author = {Elsen, Ingo}, title = {Ansichtenbasierte 3D-Objekterkennung mit erweiterten selbstorganisierenden Merkmalskarten}, publisher = {VDI-Verlag}, address = {D{\"u}sseldorf}, isbn = {978-3-18-363110-0}, issn = {0341-1796}, pages = {VIII, 140 S. : Ill., graph. Darst.}, year = {2000}, language = {de} } @article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Antriebssystemanpassungen zur Verwendung von LPG als Flugkraftstoff}, series = {Motortechnische Zeitschrift (MTZ)}, volume = {2022}, journal = {Motortechnische Zeitschrift (MTZ)}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s35146-021-0778-2}, pages = {58 -- 62}, year = {2022}, abstract = {Auch in der allgemeinen Luftfahrt w{\"a}re es w{\"u}nschenswert, die bereits vorhandenen Verbrennungsmotoren mit weniger CO₂-tr{\"a}chtigen Kraftstoffen als dem heute weit verbreiteten Avgas 100LL betreiben zu k{\"o}nnen. Es ist anzunehmen, dass im Vergleich die unter Normalbedingungen gasf{\"o}rmigen Kraftstoffe CNG, LPG oder LNG deutlich weniger Emissionen produzieren. Erforderliche Antriebssystemanpassungen wurden im Rahmen eines Forschungsprojekts an der FH Aachen untersucht.}, language = {de} }