@inproceedings{KetelhutGoellBraunsteinetal.2019, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Iterative learning control of an industrial robot for neuromuscular training}, series = {2019 IEEE Conference on Control Technology and Applications}, booktitle = {2019 IEEE Conference on Control Technology and Applications}, publisher = {IEEE}, address = {New York}, isbn = {978-1-7281-2767-5 (ePub)}, doi = {10.1109/CCTA.2019.8920659}, pages = {7 Seiten}, year = {2019}, abstract = {Effective training requires high muscle forces potentially leading to training-induced injuries. Thus, continuous monitoring and controlling of the loadings applied to the musculoskeletal system along the motion trajectory is required. In this paper, a norm-optimal iterative learning control algorithm for the robot-assisted training is developed. The algorithm aims at minimizing the external knee joint moment, which is commonly used to quantify the loading of the medial compartment. To estimate the external knee joint moment, a musculoskeletal lower extremity model is implemented in OpenSim and coupled with a model of an industrial robot and a force plate mounted at its end-effector. The algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee. The results show that the algorithm is able to minimize the external knee joint moment in all three cases and converges after less than seven iterations.}, language = {en} } @article{MeyerGaalenLeschingeretal.2019, author = {Meyer, Carolin and Gaalen, Kerstin van and Leschinger, Tim and Scheyerer, Max J. and Neiss, Wolfram F. and Staat, Manfred and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Kyphoplasty of Osteoporotic Fractured Vertebrae: A Finite Element Analysis about Two Types of Cement}, series = {BioMed Research International}, journal = {BioMed Research International}, doi = {10.1155/2019/9232813}, pages = {Article ID 9232813}, year = {2019}, language = {en} } @phdthesis{Tran2019, author = {Tran, Ngoc Trinh}, title = {Limit and Shakedown analysis of structures under stochastic conditions}, publisher = {Technische Universit{\"a}t Braunschweig}, address = {Braunschweig}, doi = {10.24355/dbbs.084-201902121135-0}, pages = {166 S.}, year = {2019}, language = {en} } @article{RoethSlabuKessleretal.2019, author = {Roeth, A.A. and Slabu, I. and Kessler, A. and Engelmann, Ulrich M.}, title = {Local treatment of pancreatic cancer with magnetic nanoparticles}, series = {HPB}, volume = {21}, journal = {HPB}, number = {Supplement 3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1365-182X}, doi = {10.1016/j.hpb.2019.10.959}, pages = {S868 -- S869}, year = {2019}, language = {en} } @incollection{TippkoetterMoehringRothetal.2019, author = {Tippk{\"o}tter, Nils and M{\"o}hring, Sophie and Roth, Jasmine and Wulfhorst, Helene}, title = {Logistics of lignocellulosic feedstocks: preprocessing as a preferable option}, series = {Biorefineries}, booktitle = {Biorefineries}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-97117-9}, doi = {10.1007/10_2017_58}, pages = {43 -- 68}, year = {2019}, abstract = {In comparison to crude oil, biorefinery raw materials are challenging in concerns of transport and storage. The plant raw materials are more voluminous, so that shredding and compacting usually are necessary before transport. These mechanical processes can have a negative influence on the subsequent biotechnological processing and shelf life of the raw materials. Various approaches and their effects on renewable raw materials are shown. In addition, aspects of decentralized pretreatment steps are discussed. Another important aspect of pretreatment is the varying composition of the raw materials depending on the growth conditions. This problem can be solved with advanced on-site spectrometric analysis of the material.}, language = {en} } @incollection{StengerAltherrAbel2019, author = {Stenger, David and Altherr, Lena and Abel, Dirk}, title = {Machine learning and metaheuristics for black-box optimization of product families: a case-study investigating solution quality vs. computational overhead}, series = {Operations Research Proceedings 2018}, booktitle = {Operations Research Proceedings 2018}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-18499-5 (Print)}, doi = {10.1007/978-3-030-18500-8_47}, pages = {379 -- 385}, year = {2019}, abstract = {In product development, numerous design decisions have to be made. Multi-domain virtual prototyping provides a variety of tools to assess technical feasibility of design options, however often requires substantial computational effort for just a single evaluation. A special challenge is therefore the optimal design of product families, which consist of a group of products derived from a common platform. Finding an optimal platform configuration (stating what is shared and what is individually designed for each product) and an optimal design of all products simultaneously leads to a mixed-integer nonlinear black-box optimization model. We present an optimization approach based on metamodels and a metaheuristic. To increase computational efficiency and solution quality, we compare different types of Gaussian process regression metamodels adapted from the domain of machine learning, and combine them with a genetic algorithm. We illustrate our approach on the example of a product family of electrical drives, and investigate the trade-off between solution quality and computational overhead.}, language = {en} } @inproceedings{HailerWeberArent2019, author = {Hailer, Benjamin and Weber, Tobias and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation for Autoclave-Produced Sandwich Structures}, series = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, booktitle = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, pages = {1 -- 8}, year = {2019}, language = {en} } @inproceedings{WeberEnglhardHaileretal.2019, author = {Weber, Tobias and Englhard, Markus and Hailer, Benjamin and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling}, series = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, booktitle = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, pages = {1 -- 10}, year = {2019}, language = {en} } @inproceedings{FingerGoettenBraunetal.2019, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten and Bil, Cees}, title = {Mass, Primary Energy, and Cost - The Impact of Optimization Objectives on the Initial Sizing of Hybrid-Electric General Aviation Aircraft}, series = {Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany}, doi = {10.25967/490012}, pages = {1 -- 17}, year = {2019}, language = {en} } @article{AchtsnichtSchoenenbornOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Sch{\"o}nenborn, Kristina and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Measurement of the magnetophoretic velocity of different superparamagnetic beads}, series = {Journal of Magnetism and Magnetic Materials}, volume = {477}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.10.066}, pages = {244 -- 248}, year = {2019}, abstract = {The movement of magnetic beads due to a magnetic field gradient is of great interest in different application fields. In this report we present a technique based on a magnetic tweezers setup to measure the velocity factor of magnetically actuated individual superparamagnetic beads in a fluidic environment. Several beads can be tracked simultaneously in order to gain and improve statistics. Furthermore we show our results for different beads with hydrodynamic diameters between 200 and 1000 nm from diverse manufacturers. These measurement data can, for example, be used to determine design parameters for a magnetic separation system, like maximum flow rate and minimum separation time, or to select suitable beads for fixed experimental requirements.}, language = {en} } @inproceedings{SchollBartellaMoluluoetal.2019, author = {Scholl, Ingrid and Bartella, Alex and Moluluo, Cem and Ertural, Berat and Laing, Frederic and Suder, Sebastian}, title = {MedicVR : Acceleration and Enhancement Techniques for Direct Volume Rendering in Virtual Reality}, series = {Bildverarbeitung f{\"u}r die Medizin 2019 : Algorithmen - Systeme - Anwendungen}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2019 : Algorithmen - Systeme - Anwendungen}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-25326-4}, doi = {10.1007/978-3-658-25326-4_32}, pages = {152 -- 157}, year = {2019}, language = {en} } @article{SchildtBraunMarzocca2019, author = {Schildt, Ph. and Braun, Carsten and Marzocca, P.}, title = {Metric evaluating potentials of condition-monitoring approaches for hybrid electric aircraft propulsion systems}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Berlin}, issn = {1869-5590}, doi = {10.1007/s13272-019-00411-3}, pages = {1 -- 14}, year = {2019}, language = {en} } @article{CampenKowalskiLyonsetal.2019, author = {Campen, R. and Kowalski, Julia and Lyons, W.B. and Tulaczyk, S. and Dachwald, Bernd and Pettit, E. and Welch, K. A. and Mikucki, J.A.}, title = {Microbial diversity of an Antarctic subglacial community and high-resolution replicate sampling inform hydrological connectivity in a polar desert}, series = {Environmental Microbiology}, journal = {Environmental Microbiology}, number = {accepted article}, publisher = {Wiley}, address = {Weinheim}, issn = {1462-2920}, doi = {10.1111/1462-2920.14607}, year = {2019}, language = {en} } @inproceedings{BraunChengLaietal.2019, author = {Braun, Sebastian and Cheng, Chi-Tsun and Lai, Chow Yin and Wollert, J{\"o}rg}, title = {Microservice Architecture for Automation - Realization by the example of a model-factory's manufacturing execution system}, series = {Proceedings of the 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, booktitle = {Proceedings of the 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, pages = {33 -- 37}, year = {2019}, language = {en} } @article{JungStaat2019, author = {Jung, Alexander and Staat, Manfred}, title = {Modeling and simulation of human induced pluripotent stem cell-derived cardiac tissue}, series = {GAMM - Mitteilungen der Gesellschaft f{\"u}r Angewandte Mathematik und Mechanik}, volume = {42}, journal = {GAMM - Mitteilungen der Gesellschaft f{\"u}r Angewandte Mathematik und Mechanik}, number = {4}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2608}, doi = {10.1002/gamm.201900002}, pages = {11 Seiten}, year = {2019}, language = {en} } @article{SlabuRoethEngelmannetal.2019, author = {Slabu, Ioana and Roeth, Anjali A. and Engelmann, Ulrich M. and Wiekhorst, Frank and Buhl, Eva M. and Neumann, Ulf P. and Schmitz-Rode, Thomas}, title = {Modeling of magnetoliposome uptake in human pancreatic tumor cells in vitro}, series = {Nanotechnology}, volume = {30}, journal = {Nanotechnology}, number = {18}, issn = {1361-6528}, doi = {10.1088/1361-6528/ab033e}, pages = {184004}, year = {2019}, language = {en} } @inproceedings{RamanJungHorvathetal.2019, author = {Raman, Aravind Hariharan and Jung, Alexander and Horv{\´a}th, Andr{\´a}s and Becker, Nadine and Staat, Manfred}, title = {Modification of a computer model of human stem cell-derived cardiomyocyte electrophysiology based on Patch-Clamp measurements}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {10 -- 11}, year = {2019}, abstract = {Human induced pluripotent stem cells (hiPSCs) have shown to be promising in disease studies and drug screenings [1]. Cardiomyocytes derived from hiPSCs have been extensively investigated using patch-clamping and optical methods to compare their electromechanical behaviour relative to fully matured adult cells. Mathematical models can be used for translating findings on hiPSCCMs to adult cells [2] or to better understand the mechanisms of various ion channels when a drug is applied [3,4]. Paci et al. (2013) [3] developed the first model of hiPSC-CMs, which they later refined based on new data [3]. The model is based on iCells® (Fujifilm Cellular Dynamics, Inc. (FCDI), Madison WI, USA) but major differences among several cell lines and even within a single cell line have been found and motivate an approach for creating sample-specific models. We have developed an optimisation algorithm that parameterises the conductances (in S/F=Siemens/Farad) of the latest Paci et al. model (2018) [5] using current-voltage data obtained in individual patch-clamp experiments derived from an automated patch clamp system (Patchliner, Nanion Technologies GmbH, Munich).}, language = {en} } @article{AlbannaLuekeSchubertetal.2019, author = {Albanna, Walid and L{\"u}ke, Jan Niklas and Schubert, Gerrit Alexander and Dibu{\´e}-Adjei, Maxine and Kotliar, Konstantin and Hescheler, J{\"u}rgen and Clusmann, Hans and Steiger, Hans-Jakob and H{\"a}nggi, Daniel and Kamp, Marcel A. and Schneider, Toni and Neumaier, Felix}, title = {Modulation of Ca v 2.3 channels by unconjugated bilirubin (UCB) - Candidate mechanism for UCB-induced neuromodulation and neurotoxicity}, series = {Molecular and Cellular Neuroscience}, volume = {96}, journal = {Molecular and Cellular Neuroscience}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1044-7431}, doi = {10.1016/j.mcn.2019.03.003}, pages = {35 -- 46}, year = {2019}, language = {en} } @inproceedings{MuellerAltherrAholaetal.2019, author = {M{\"u}ller, Tim M. and Altherr, Lena and Ahola, Marja and Schabel, Samuel and Pelz, Peter F.}, title = {Multi-Criteria optimization of pressure screen systems in paper recycling - balancing quality, yield, energy consumption and system complexity}, series = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, booktitle = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, editor = {Rodrigues, H. C.}, publisher = {Springer International Publishing}, address = {Basel}, isbn = {978-3-319-97773-7}, doi = {10.1007/978-3-319-97773-7_105}, year = {2019}, abstract = {The paper industry is the industry with the third highest energy consumption in the European Union. Using recycled paper instead of fresh fibers for papermaking is less energy consuming and saves resources. However, adhesive contaminants in recycled paper are particularly problematic since they reduce the quality of the resulting paper-product. To remove as many contaminants and at the same time obtain as many valuable fibres as possible, fine screening systems, consisting of multiple interconnected pressure screens, are used. Choosing the best configuration is a non-trivial task: The screens can be interconnected in several ways, and suitable screen designs as well as operational parameters have to be selected. Additionally, one has to face conflicting objectives. In this paper, we present an approach for the multi-criteria optimization of pressure screen systems based on Mixed-Integer Nonlinear Programming. We specifically focus on a clear representation of the trade-off between different objectives.}, language = {en} } @article{GoettscheAlexopoulosDuemmleretal.2019, author = {G{\"o}ttsche, Joachim and Alexopoulos, Spiros and D{\"u}mmler, Andreas and Maddineni, S. K.}, title = {Multi-Mirror Array Calculations With Optical Error}, pages = {1 -- 6}, year = {2019}, abstract = {The optical performance of a 2-axis solar concentrator was simulated with the COMSOL Multiphysics® software. The concentrator consists of a mirror array, which was created using the application builder. The mirror facets are preconfigured to form a focal point. During tracking all mirrors are moved simultaneously in a coupled mode by 2 motors in two axes, in order to keep the system in focus with the moving sun. Optical errors on each reflecting surface were implemented in combination with the solar angular cone of ± 4.65 mrad. As a result, the intercept factor of solar radiation that is available to the receiver was calculated as a function of the transversal and longitudinal angles of incidence. In addition, the intensity distribution on the receiver plane was calculated as a function of the incidence angles.}, language = {en} }