@article{FoersterDiekerGerthsen1993, author = {F{\"o}rster, Arnold and Dieker, C. and Gerthsen, D.}, title = {Microstructure of the AlAs/GaAs and AlAs/InGaAs resonant tunneling diodes and its correlation with the electrical properties / C. Dieker ; D. Gerthsen ; A. F{\"o}rster ...}, series = {Microscopy of semiconducting materials 1993 : proceedings of the Royal Microscopical Society Conference held at Oxford University, 5 - 8 April 1993 / ed. by A. G. Cullis ... - (Conference series / Institute of Physics ; 134)}, journal = {Microscopy of semiconducting materials 1993 : proceedings of the Royal Microscopical Society Conference held at Oxford University, 5 - 8 April 1993 / ed. by A. G. Cullis ... - (Conference series / Institute of Physics ; 134)}, publisher = {Institute of Physics}, address = {Bristol [u.a.]}, isbn = {0-7503-0290-9}, pages = {253 -- ff.}, year = {1993}, language = {en} } @article{KaemperAbrahamEhrfeldetal.1998, author = {K{\"a}mper, Klaus-Peter and Abraham, M. and Ehrfeld, W. and Hessel, V.}, title = {Microsystem technology: Between research and industrial application. Abraham, M.; Ehrfeld, W.; Hessel, V.; K{\"a}mper, K.-P.; Lacher, M.; Picard, A.}, series = {Microelectronic Engineering. 41-42 (1998)}, journal = {Microelectronic Engineering. 41-42 (1998)}, isbn = {0167-9317}, pages = {47 -- 52}, year = {1998}, language = {en} } @article{Heuermann1997, author = {Heuermann, Holger}, title = {Microwave On-Wafer Measurements with Activ Needle Probe Tips}, pages = {208 -- 214}, year = {1997}, language = {en} } @article{HeuermannEmmrichBongartz2022, author = {Heuermann, Holger and Emmrich, Thomas and Bongartz, Simon}, title = {Microwave spark plug to support ignitions with high compression ratios}, series = {IEEE Transactions on Plasma Science}, journal = {IEEE Transactions on Plasma Science}, number = {Early Access}, publisher = {IEEE}, issn = {1939-9375}, doi = {10.1109/TPS.2022.3183690}, pages = {1 -- 6}, year = {2022}, abstract = {Upcoming gasoline engines should run with a larger number of fuels beginning from petrol over methanol up to gas by a wide range of compression ratios and a homogeneous charge. In this article, the microwave (MW) spark plug, based on a high-speed frequency hopping system, is introduced as a solution, which can support a nitrogen compression ratio up to 1:39 in a chamber and more. First, an overview of the high-speed frequency hopping MW ignition and operation system as well as the large number of applications are presented. Both gives an understanding of this new base technology for MW plasma generation. Focus of the theoretical part is the explanation of the internal construction of the spark plug, on the achievable of the high voltage generation as well as the high efficiency to hold the plasma. In detail, the development process starting with circuit simulations and ending with the numerical multiphysics field simulations is described. The concept is evaluated with a reference prototype covering the frequency range between 2.40 and 2.48 GHz and working over a large power range from 20 to 200 W. A larger number of different measurements starting by vector hot-S11 measurements and ending by combined working scenarios out of hot temperature, high pressure and charge motion are winding up the article. The limits for the successful pressure tests were given by the pressure chamber. Pressures ranged from 1 to 39 bar and charge motion up to 25 m/s as well as temperatures from 30◦ to 125◦.}, language = {en} } @article{HueningJaekelFrancoisetal.1996, author = {H{\"u}ning, Felix and Jaekel, C. and Francois, I. and Kyas, G.}, title = {Microwave surface impedance measurements on high-Tc superconductors / Jaekel, C. ; Francois, I. ; Kyas, G. ; H{\"u}ning, F. ; Roskos, H. G. ; Borghs, G. ; Kurz, H.}, series = {Czechoslovak Journal of Physics. 46 (1996), H. Suppl. 2}, journal = {Czechoslovak Journal of Physics. 46 (1996), H. Suppl. 2}, number = {46}, publisher = {Springer Science+Business Media}, address = {Dordrecht}, isbn = {1572-9486}, pages = {1117 -- 1118}, year = {1996}, language = {en} } @article{SchoeningNaetherAugeretal.2005, author = {Sch{\"o}ning, Michael Josef and N{\"a}ther, Niko and Auger, V. and Poghossian, Arshak and Koudelka-Hep, M.}, title = {Miniaturised flow-through cell with integrated capacitive EIS sensor fabricated at wafer level using Si and SU-8 technologies}, series = {Sensors and Actuators B. 108 (2005), H. 1-2}, journal = {Sensors and Actuators B. 108 (2005), H. 1-2}, isbn = {0925-4005}, pages = {986 -- 992}, year = {2005}, language = {en} } @article{SimonisDawgulLuethetal.2005, author = {Simonis, A. and Dawgul, M. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Miniaturised reference electrodes for field-effect sensors compatible to silicon chip technology}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, doi = {10.1016/j.electacta.2005.04.063}, pages = {930 -- 937}, year = {2005}, language = {en} } @article{SteinseiferKashefiHormesetal.2009, author = {Steinseifer, Ulrich and Kashefi, Ali and Hormes, Marcus and Schoberer, Mark and Orlikowsky, Thorsten and Behbahani, Mehdi and Behr, Marek and Schmitz-Rode, Thomas}, title = {Miniaturization of ECMO Systems : Engineering Challenges and Methods}, series = {Artificial Organs. 33 (2009), H. 5}, journal = {Artificial Organs. 33 (2009), H. 5}, isbn = {1525-1594}, pages = {A55 -- A55}, year = {2009}, language = {en} } @article{SchoeningRonkelCrottetal.1997, author = {Sch{\"o}ning, Michael Josef and Ronkel, F. and Crott, M. and Thust, M. (u.a.)}, title = {Miniaturization of potentiometric sensors using porous silicon microtechnology}, series = {Electrochimica Acta. 42 (1997), H. 22}, journal = {Electrochimica Acta. 42 (1997), H. 22}, isbn = {0013-4686}, pages = {3185 -- 3193}, year = {1997}, language = {en} } @article{MiyamotoKanekoMatsuoetal.2012, author = {Miyamoto, Ko-ichiro and Kaneko, Kazumi and Matsuo, Akira and Wagner, Torsten and Kanoh, Shin{\´i}chiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Miniaturized chemical imaging sensor system using an OLED display panel}, series = {Sensors and Actuators B: Chemical}, volume = {170}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2011.02.029}, pages = {82 -- 87}, year = {2012}, abstract = {The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the two-dimensional distribution of specific ions or molecules in the solution. In this study, we developed a miniaturized chemical imaging sensor system with an OLED display panel as a light source that scans the sensor plate. In the proposed configuration, the display panel is placed directly below the sensor plate and illuminates the back surface. The measured area defined by illumination can be arbitrarily customized to fit the size and the shape of the sample to be measured. The waveform of the generated photocurrent, the current-voltage characteristics and the pH sensitivity were investigated and pH imaging with this miniaturized system was demonstrated.}, language = {en} } @article{MiyamotoKanekoMatsuoetal.2010, author = {Miyamoto, Ko-ichiro and Kaneko, Kazumi and Matsuo, Akira and Wagner, Torsten and Kanoh, Shin`ichiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Miniaturized chemical imaging sensor system using an OLED display panel}, series = {Procedia Engineering}, volume = {5}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2010.09.160}, pages = {516 -- 519}, year = {2010}, abstract = {The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the two-dimensional distribution of specific ions or molecules in the solution. In this study, we developed a miniaturized chemical imaging sensor system with an OLED display panel as a light source that scans the sensor plate. In the proposed configuration, the display panel is placed directly below the sensor plate and illuminates the back surface. The measured area defined by illumination can be arbitrarily customized to fit the size and the shape of the sample to be measured. The waveform of the generated photocurrent, the currentvoltage characteristics and the pH sensitivity were investigated and pH imaging with this miniaturized system was demonstrated.}, language = {en} } @article{SchoeningNaetherAugeretal.2004, author = {Sch{\"o}ning, Michael Josef and N{\"a}ther, Niko and Auger, V. and Poghossian, Arshak and Koudelka-Hep, M.}, title = {Miniaturized flow-through cell with integrated capacitive EIS sensors fabricated at wafer level using Si and Su-8 technologies}, series = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, journal = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, publisher = {Japan Association of Chemical Sensors}, address = {Fukuoka}, pages = {554 -- 555}, year = {2004}, language = {en} } @article{MolinnusIkenJohnenetal.2022, author = {Molinnus, Denise and Iken, Heiko and Johnen, Anna Lynn and Richstein, Benjamin and Hellmich, Lena and Poghossian, Arshak and Knoch, Joachim and Sch{\"o}ning, Michael Josef}, title = {Miniaturized pH-Sensitive Field-Effect Capacitors with Ultrathin Ta₂O₅ Films Prepared by Atomic Layer Deposition}, series = {physica status solidi (a) applications and materials science}, volume = {219}, journal = {physica status solidi (a) applications and materials science}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202100660}, pages = {7 Seiten}, year = {2022}, abstract = {Miniaturized electrolyte-insulator-semiconductor capacitors (EISCAPs) with ultrathin gate insulators have been studied in terms of their pH-sensitive sensor characteristics: three different EISCAP systems consisting of Al-p-Si-Ta2O5(5 nm), Al-p-Si-Si3N4(1 or 2 nm)-Ta2O5 (5 nm), and Al-p-Si-SiO2(3.6 nm)-Ta2O5(5 nm) layer structures are characterized in buffer solution with different pH values by means of capacitance-voltage and constant capacitance method. The SiO2 and Si3N4 gate insulators are deposited by rapid thermal oxidation and rapid thermal nitridation, respectively, whereas the Ta2O5 film is prepared by atomic layer deposition. All EISCAP systems have a clear pH response, favoring the stacked gate insulators SiO2-Ta2O5 when considering the overall sensor characteristics, while the Si3N4(1 nm)-Ta2O5 stack delivers the largest accumulation capacitance (due to the lower equivalent oxide thickness) and a higher steepness in the slope of the capacitance-voltage curve among the studied stacked gate insulator systems.}, language = {en} } @article{Dachwald2004, author = {Dachwald, Bernd}, title = {Minimum Transfer Times for Nonperfectly Reflecting Solar Sailcraft}, series = {Journal of Spacecraft and Rockets. 41 (2004), H. 4}, journal = {Journal of Spacecraft and Rockets. 41 (2004), H. 4}, isbn = {0022-4650}, pages = {693 -- 695}, year = {2004}, language = {en} } @article{DachwaldWurm2011, author = {Dachwald, Bernd and Wurm, Patrick}, title = {Mission analysis and performance comparison for an Advanced Solar Photon Thruster}, series = {Advances in Space Research}, volume = {48}, journal = {Advances in Space Research}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, pages = {1858 -- 1868}, year = {2011}, language = {en} } @article{MaiwaldDachwald2010, author = {Maiwald, Volker and Dachwald, Bernd}, title = {Mission design for a multiple-rendezvous mission to Jupiter's trojans}, pages = {3}, year = {2010}, abstract = {In this paper, we will provide a feasible mission design for a multiple-rendezvous mission to Jupiter's Trojans. It is based on solar electric propulsion, as being currently used on the DAWN spacecraft, and other flight-proven technology. First, we have selected a set of mission objectives, the prime objective being the detection of water -especially subsurface water -to provide evidence for the Trojans' formation at large solar distances. Based on DAWN and other comparable missions, we have determined suitable payload instruments to achieve these objectives. Afterwards, we have designed a spacecraft that is able to carry the selected payload to the Trojan region and rendezvous successively with three target bodies within a maximum mission duration of 15 years. Accurate low-thrust trajectories have been obtained with a global low-thrust trajectory optimization program (InTrance). During the transfer from Earth to the first target, the spacecraft is propelled by two RIT-22 ion engines from EADS Astrium, whereas a single RIT-15 is used for transfers within the Trojan region to reduce the required power. For power generation, the spacecraft uses a multi-junction solar array that is supported by concentrators. To achieve moderate mission costs, we have restricted the launch mass to a maximum of 1600 kg, the maximum interplanetary injection capability of a Soyuz/Fregat launcher. Our final layout has a mass of 1400 kg, yielding a margin of about 14\%. Nestor (a member of the L4-population) was determined as the first mission target. It can be reached within 4.6 years from launch. The fuel mass ratio for this transfer is about 35\%. The stay time at Nestor is 1.2 years. Eurymedon was selected as the second target (transfer time 3.5 years, stay time 3.0 years) and Irus as the third target (transfer time 2.2 years). The transfers within the Trojan L4-population can be accomplished with fuel mass ratios of about 3\% for each trajectory leg. Including the stay times in orbit around the targets, the mission can be accomplished within a total duration of about 14.5 years. According to our mission analysis, it is also feasible to fly to the L5-population with similar flight times. It has to be noted that -for a first analysis -we have taken only the named targets into account. Allowing also rendezvous with unnamed objects will very likely decrease the mission duration. Based on a scaling of DAWN's mission costs (due to comparable scientific instruments and mission objectives), and taking into account the longer mission duration and the potential re-use of already developed technology, we have estimated that these three rendezvous can be accomplished with a budget of about 250 Million Euros, i.e. about 25\% of ROSETTA's budget.}, language = {en} } @article{RiglingEilmannKoechlietal.2010, author = {Rigling, Andreas and Eilmann, Britta and Koechli, Roger and Dobbertin, Matthias}, title = {Mistletoe-induced crown degradation in Scots pine in a xeric environment}, volume = {30}, number = {7}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1758-4469 (Online)}, doi = {10.1093/treephys/tpq038}, pages = {845 -- 832}, year = {2010}, abstract = {Increasing Scots pine (Pinus sylvestris L.) mortality has been recently observed in the dry inner valleys of the European Alps. Besides drought, infection with pine mistletoe (Viscum album ssp. austriacum) seems to play an important role in the mortality dynamics of Scots pines, but how mistletoes promote pine decline remains unclear. To verify whether pine mistletoe infection weakens the host via crown degradation, as observed for dwarf mistletoes, we studied the negative effects of pine mistletoe infestation on the photosynthetic tissues and branch growth of pairs of infested and non-infested branches. Pine mistletoe infection leads to crown degradation in its host by reducing the length, the radial increment, the ramification, the needle length and the number of needle years of the infested branches. This massive loss in photosynthetic tissue results in a reduction in primary production and a subsequent decrease in carbohydrate availability. The significant reduction in needle length due to mistletoe infection is an indication for a lower water and nutrient availability in infested branches. Thus, mistletoe infection might lead to a decrease in the availability of water and carbohydrates, the two most important growth factors, which are already shortened due to the chronic drought situation in the area. Therefore, pine mistletoe increases the risk of drought-induced mortality of its host when growing in a xeric environment.}, language = {en} } @article{OrzadaJohstMaderwaldetal.2013, author = {Orzada, Stephan and Johst, S{\"o}ren and Maderwald, Stefan and Bitz, Andreas and Solbach, Klaus and Ladd, Mark E.}, title = {Mitigation of B1(+) inhomogeneity on single-channel transmit systems with TIAMO}, series = {Magnetic Resonance in Medicine}, volume = {70}, journal = {Magnetic Resonance in Medicine}, number = {1}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.24453}, pages = {290 -- 294}, year = {2013}, language = {en} } @article{HeuermannErkens2007, author = {Heuermann, Holger and Erkens, H.}, title = {Mixed-Mode Chain Scattering Parameters: Theory and Verification}, series = {IEEE Transactions on Microwave Theory and Techniques}, volume = {55}, journal = {IEEE Transactions on Microwave Theory and Techniques}, number = {8}, publisher = {IEEE}, address = {New York}, isbn = {0018-9480}, doi = {10.1109/TMTT.2007.902587}, pages = {1704 -- 1708}, year = {2007}, abstract = {Chain scattering parameters or T-parameters are a useful tool for calculating cascaded two-ports. With the increasing importance of mixed-mode S-parameters, a need for converting the T-parameters from their unbalanced form into a balanced form emerges for suiting both common and differential mode waves, as well as the mode conversion. This paper presents the derivation of the equations for transformations between mixed-mode S- and T-parameters for a mixed-mode two-port. Although derived in a way very similar to monomode T-parameters, no simplifications were necessary. Measurement results exemplify the quality of the T-parameter transformation under real-life conditions.}, language = {en} } @article{Wrede1996, author = {Wrede, Oliver}, title = {Mnemotechnik in graphischen Benutzeroberfl{\"a}chen}, series = {Form / Form-Diskurs : Zeitschrift f{\"u}r Design und Theorie. 1 (1996), H. 2}, journal = {Form / Form-Diskurs : Zeitschrift f{\"u}r Design und Theorie. 1 (1996), H. 2}, year = {1996}, language = {en} }