@inproceedings{HuckPoghossianBuniatyanetal.2014, author = {Huck, Christina and Poghossian, Arshak and Buniatyan, V. and Sch{\"o}ning, Michael Josef}, title = {Multi-parameter detection for supporting monitoring and control of biogas processes in agriculture}, series = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, booktitle = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, publisher = {VDE-Verl.}, address = {Berlin}, organization = {VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, isbn = {978-3-8007-3622-5}, pages = {1 -- 5}, year = {2014}, language = {en} } @article{PoghossianSchultzeSchoening2003, author = {Poghossian, Arshak and Schultze, J. W. and Sch{\"o}ning, Michael Josef}, title = {Multi-parameter detection of (bio-)chemical and physical quantities using an identical transducer principle}, series = {Sensors and Actuators B. 91 (2003), H. 1-3}, journal = {Sensors and Actuators B. 91 (2003), H. 1-3}, isbn = {0925-4005}, pages = {83 -- 91}, year = {2003}, language = {en} } @inproceedings{NaetherPoghossianPlatenetal.2006, author = {N{\"a}ther, Niko and Poghossian, Arshak and Platen, J. and Yoshinobu, T. and Koudelka-Hep, M. and Sch{\"o}ning, Michael Josef}, title = {Multi-parameter sensing of both physical and (bio-)chemical quantities using the same transducer principle}, series = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, booktitle = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, address = {Warsaw}, pages = {172 -- 181}, year = {2006}, language = {en} } @article{HuckPoghossianBaeckeretal.2015, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Reisert, Steffen and Kramer, Friederike and Begoyan, Vardges K. and Buniatyan, Vahe V. and Sch{\"o}ning, Michael Josef}, title = {Multi-parameter sensing using high-k oxide of barium strontium titanate}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431911}, pages = {1259}, year = {2015}, abstract = {High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors. In this work, a Si-based sensor chip containing Pt interdigitated electrodes covered with a thin BST layer (485 nm) has been developed for multi-parameter chemical sensing. The chip has been applied for the contactless measurement of the electrolyte conductivity, the detection of adsorbed charged macromolecules (positively charged polyelectrolytes of polyethylenimine) and the concentration of hydrogen peroxide (H2O2) vapor. The experimental results of functional testing of individual sensors are presented. The mechanism of the BST sensitivity to charged polyelectrolytes and H2O2 vapor has been proposed and discussed.}, language = {en} } @article{ReisertSchneiderGeissleretal.2013, author = {Reisert, Steffen and Schneider, Benno and Geissler, Hanno and Gompel, Matthias van and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Multi-sensor chip for the investigation of different types of metal oxides for the detection of H2O2 in the ppm range}, series = {physica status solidi (a)}, volume = {210}, journal = {physica status solidi (a)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, pages = {898 -- 904}, year = {2013}, abstract = {In this work, a multi-sensor chip for the investigation of the sensing properties of different types of metal oxides towards hydrogen peroxide in the ppm range is presented. The fabrication process and physical characterization of the multi-sensor chip are described. Pure SnO2 and WO3 as well as Pd- and Pt-doped SnO2 films are characterized in terms of their sensitivity to H2O2. The sensing films have been prepared by drop-coating of water-dispensed nano-powders. A physical characterization, including scanning electron microscopy and X-ray diffraction analysis of the deposited metal-oxide films, was done. From the measurements in hydrogen peroxide atmosphere, it could be shown, that all of the tested metal oxide films are suitable for the detection of H2O2 in the ppm range. The highest sensitivity and reproducibility was achieved using Pt-doped SnO2. Calibration plot of a SnO2, WO3, Pt-, and Pd-doped SnO2 gas sensor for H2O2 concentrations in the ppm range.}, language = {en} } @article{MiyamotoWagnerSchoeningetal.2011, author = {Miyamoto, K. and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {Multi-well structure for cell culture on the chemical imaging sensor}, publisher = {IEEE}, address = {New York}, pages = {2130 -- 2132}, year = {2011}, language = {en} } @article{SchubertSchoeningMourzinaetal.2001, author = {Schubert, J. and Sch{\"o}ning, Michael Josef and Mourzina, Y. G. and Legin, A. V. and Vlasov, Y. G. and Zander, W. and L{\"u}th, H.}, title = {Multicomponent thin films for electrochemical sensor applications prepared by pulsed laser deposition}, series = {Sensors and Actuators B. 76 (2001), H. 1-3}, journal = {Sensors and Actuators B. 76 (2001), H. 1-3}, isbn = {0925-4005}, pages = {327 -- 330}, year = {2001}, language = {en} } @article{HuckPoghossianKerroumietal.2014, author = {Huck, Christina and Poghossian, Arshak and Kerroumi, Iman and Schusser, Sebastian and B{\"a}cker, Matthias and Zander, Willi and Schubert, J{\"u}rgen and Buniatyan, Vahe V. and Martirosyan, Norayr W. and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Multiparameter sensor chip with Barium Strontium Titanate as multipurpose material}, series = {Electroanalysis}, volume = {26}, journal = {Electroanalysis}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109 (E-Journal); 1040-0397 (Print)}, doi = {10.1002/elan.201400076}, pages = {980 -- 987}, year = {2014}, abstract = {It is well known that biochemical and biotechnological processes are strongly dependent and affected by a variety of physico-chemical parameters such as pH value, temperature, pressure and electrolyte conductivity. Therefore, these quantities have to be monitored or controlled in order to guarantee a stable process operation, optimization and high yield. In this work, a sensor chip for the multiparameter detection of three physico-chemical parameters such as electrolyte conductivity, pH and temperature is realized using barium strontium titanate (BST) as multipurpose material. The chip integrates a capacitively coupled four-electrode electrolyte-conductivity sensor, a capacitive field-effect pH sensor and a thin-film Pt-temperature sensor. Due to the multifunctional properties of BST, it is utilized as final outermost coating layer of the processed sensor chip and serves as passivation and protection layer as well as pH-sensitive transducer material at the same time. The results of testing of the individual sensors of the developed multiparameter sensor chip are presented. In addition, a quasi-simultaneous multiparameter characterization of the sensor chip in buffer solutions with different pH value and electrolyte conductivity is performed. To study the sensor behavior and the suitability of BST as multifunctional material under harsh environmental conditions, the sensor chip was exemplarily tested in a biogas digestate.}, language = {en} } @article{ReisertGeisslerWeileretal.2015, author = {Reisert, Steffen and Geissler, H. and Weiler, C. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Multiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes}, series = {Food control}, volume = {47}, journal = {Food control}, issn = {1873-7129 (E-Journal); 0956-7135 (Print)}, doi = {10.1016/j.foodcont.2014.07.063}, pages = {615 -- 622}, year = {2015}, abstract = {The present work describes a novel multiple sensor-type system for the real-time analysis of aseptic sterilisation processes employing gaseous hydrogen peroxide (H2O2) as a sterilant. The inactivation kinetics of Bacillus atrophaeus by gaseous H2O2 have been investigated by means of a methodical calibration experiment, taking into account the process variables H2O2 concentration, humidity and gas temperature. It has been found that the microbicidal effectiveness at H2O2 concentrations above 2\% v/v is largely determined by the concentration itself, while at lower H2O2 concentrations, the gas temperature and humidity play a leading role. Furthermore, the responses of different types of gas sensors towards the influencing factors of the sterilisation process have been analysed within the same experiment. Based on a correlation established between the inactivation kinetics and the sensor responses, a calorimetric H2O2 sensor and a metal-oxide semiconductor (MOX) sensor have been identified as possible candidates for monitoring the microbicidal effectiveness of aseptic sterilisation processes employing gaseous H2O2. Therefore, two linear models that describe the relationship between sensor response and microbicidal effectiveness have been proposed.}, language = {en} } @article{AchtsnichtPourshahidiOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Pourshahidi, Ali Mohammad and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Multiplex detection of different magnetic beads using frequency scanning in magnetic frequency mixing technique}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19112599}, pages = {13 Seiten}, year = {2019}, abstract = {In modern bioanalytical methods, it is often desired to detect several targets in one sample within one measurement. Immunological methods including those that use superparamagnetic beads are an important group of techniques for these applications. The goal of this work is to investigate the feasibility of simultaneously detecting different superparamagnetic beads acting as markers using the magnetic frequency mixing technique. The frequency of the magnetic excitation field is scanned while the lower driving frequency is kept constant. Due to the particles' nonlinear magnetization, mixing frequencies are generated. To record their amplitude and phase information, a direct digitization of the pickup-coil's signal with subsequent Fast Fourier Transformation is performed. By synchronizing both magnetic beads using frequency scanning in magnetic frequency mixing technique magnetic fields, a stable phase information is gained. In this research, it is shown that the amplitude of the dominant mixing component is proportional to the amount of superparamagnetic beads inside a sample. Additionally, it is shown that the phase does not show this behaviour. Excitation frequency scans of different bead types were performed, showing different phases, without correlation to their diverse amplitudes. Two commercially available beads were selected and a determination of their amount in a mixture is performed as a demonstration for multiplex measurements.}, language = {en} } @article{PourshahidiAchtsnichtNambipareecheeetal.2021, author = {Pourshahidi, Ali Mohammad and Achtsnicht, Stefan and Nambipareechee, Mrinal Murali and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Multiplex detection of magnetic beads using offset field dependent frequency mixing magnetic detection}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {17}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21175859}, pages = {16 Seiten}, year = {2021}, abstract = {Magnetic immunoassays employing Frequency Mixing Magnetic Detection (FMMD) have recently become increasingly popular for quantitative detection of various analytes. Simultaneous analysis of a sample for two or more targets is desirable in order to reduce the sample amount, save consumables, and save time. We show that different types of magnetic beads can be distinguished according to their frequency mixing response to a two-frequency magnetic excitation at different static magnetic offset fields. We recorded the offset field dependent FMMD response of two different particle types at frequencies ƒ₁ + n⋅ƒ₂, n = 1, 2, 3, 4 with ƒ₁ = 30.8 kHz and ƒ₂ = 63 Hz. Their signals were clearly distinguishable by the locations of the extremes and zeros of their responses. Binary mixtures of the two particle types were prepared with different mixing ratios. The mixture samples were analyzed by determining the best linear combination of the two pure constituents that best resembled the measured signals of the mixtures. Using a quadratic programming algorithm, the mixing ratios could be determined with an accuracy of greater than 14\%. If each particle type is functionalized with a different antibody, multiplex detection of two different analytes becomes feasible.}, language = {en} } @article{KarschuckSchmidtAchtsnichtetal.2023, author = {Karschuck, Tobias and Schmidt, Stefan and Achtsnicht, Stefan and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Multiplexing system for automated characterization of a capacitive field-effect sensor array}, series = {Physica Status Solidi A}, volume = {220}, journal = {Physica Status Solidi A}, number = {22}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300 (Print)}, doi = {10.1002/pssa.202300265}, pages = {7 Seiten}, year = {2023}, abstract = {In comparison to single-analyte devices, multiplexed systems for a multianalyte detection offer a reduced assay time and sample volume, low cost, and high throughput. Herein, a multiplexing platform for an automated quasi-simultaneous characterization of multiple (up to 16) capacitive field-effect sensors by the capacitive-voltage (C-V) and the constant-capacitance (ConCap) mode is presented. The sensors are mounted in a newly designed multicell arrangement with one common reference electrode and are electrically connected to the impedance analyzer via the base station. A Python script for the automated characterization of the sensors executes the user-defined measurement protocol. The developed multiplexing system is tested for pH measurements and the label-free detection of ligand-stabilized, charged gold nanoparticles.}, language = {en} } @article{KhaydukovaZadorozhnayaKirsanovetal.2014, author = {Khaydukova, M. M. and Zadorozhnaya, O. A. and Kirsanov, D. O. and Iken, Heiko and Rolka, David and Sch{\"o}ning, Michael Josef and Babain, V. A. and Vlasov, Yu. G. and Legin, A. V.}, title = {Multivariate processing of atomic-force microscopy images for detection of the response of plasticized polymeric membranes}, series = {Russian journal of applied chemistry}, volume = {87}, journal = {Russian journal of applied chemistry}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1608-3296 (E-Journal); 1070-4272 (Print)}, doi = {10.1134/S1070427214030112}, pages = {307 -- 314}, year = {2014}, abstract = {The possibility of using the atomic-force microscopy as a method for detection of the analytical signal from plasticized polymeric sensor membranes was analyzed. The surfaces of cadmium-selective membranes based on two polymeric matrices were examined. The digital images were processed with multivariate image analysis techniques. A correlation was found between the surface profile of an ion-selective membrane and the concentration of the ion in solution.}, language = {en} } @article{PoghossianAbouzarChristiaensetal.2007, author = {Poghossian, Arshak and Abouzar, Maryam H. and Christiaens, P. and Williams, O. A. and Haenen, K. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Nanocrystalline diamond-based field-effect (bio-)chemical sensor}, series = {8. Dresdner Sensor-Symposium : Sensoren f{\"u}r Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme f{\"u}r die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung f{\"u}r die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.)}, journal = {8. Dresdner Sensor-Symposium : Sensoren f{\"u}r Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme f{\"u}r die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung f{\"u}r die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.)}, publisher = {TUDpress, Verl. der Wissenschaften}, address = {Dresden}, isbn = {978-3-940046-45-1}, pages = {191 -- 194}, year = {2007}, language = {en} } @article{ChristiaensAbouzarPoghossianetal.2007, author = {Christiaens, P. and Abouzar, Maryam H. and Poghossian, Arshak and Wagner, Torsten and Bijnens, N. and Williams, O. A. and Daenen, M. and Haenen, K. and Sch{\"o}ning, Michael Josef and Wagner, P.}, title = {Nanocrystalline diamond-based field-effect capacitive pH sensor}, series = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, journal = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, publisher = {IEEE}, address = {Piscataway}, isbn = {1-4244-0841-5}, pages = {1891 -- 1894}, year = {2007}, language = {en} } @article{PoghossianAbouzarRazavietal.2009, author = {Poghossian, Arshak and Abouzar, Maryam H. and Razavi, A. and B{\"a}cker, Matthias and Bijnens, N. and Williams, O. A. and Haenen, K. and Moritz, W. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO2 structure}, series = {Electrochimica Acta. 54 (2009), H. 25}, journal = {Electrochimica Acta. 54 (2009), H. 25}, isbn = {0013-4686}, pages = {5981 -- 5985}, year = {2009}, language = {en} } @article{MoraisGomesSilvaetal.2017, author = {Morais, Paulo V. and Gomes, Vanderley F., Jr. and Silva, Anielle C. A. and Dantas, Noelio O. and Sch{\"o}ning, Michael Josef and Siqueira, Jos{\´e} R., Jr.}, title = {Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices}, series = {Journal of Materials Science}, volume = {52}, journal = {Journal of Materials Science}, number = {20}, publisher = {Springer}, address = {Berlin}, issn = {1573-4803}, doi = {10.1007/s10853-017-1369-y}, pages = {12314 -- 12325}, year = {2017}, abstract = {The incorporation of nanomaterials that are biocompatible with different types of biological compounds has allowed the development of a new generation of biosensors applied especially in the biomedical field. In particular, the integration of film-based nanomaterials employed in field-effect devices can be interesting to develop biosensors with enhanced properties. In this paper, we studied the fabrication of sensitive nanofilms combining ZnO nanocrystals and carbon nanotubes (CNTs), prepared by means of the layer-by-layer (LbL) technique, in a capacitive electrolyte-insulator-semiconductor (EIS) structure for detecting glucose and urea. The ZnO nanocrystals were incorporated in a polymeric matrix of poly(allylamine) hydrochloride (PAH), and arranged with multi-walled CNTs in a LbL PAH-ZnO/CNTs film architecture onto EIS chips. The electrochemical characterizations were performed by capacitance-voltage and constant capacitance measurements, while the morphology of the films was characterized by atomic force microscopy. The enzymes glucose oxidase and urease were immobilized on film's surface for detection of glucose and urea, respectively. In order to obtain glucose and urea biosensors with optimized amount of sensitive films, we investigated the ideal number of bilayers for each detection system. The glucose biosensor showed better sensitivity and output signal for an LbL PAH-ZnO/CNTs nanofilm with 10 bilayers. On the other hand, the urea biosensor presented enhanced properties even for the first bilayer, exhibiting high sensitivity and output signal. The presence of the LbL PAH-ZnO/CNTs films led to biosensors with better sensitivity and enhanced response signal, demonstrating that the adequate use of nanostructured films is feasible for proof-of-concept biosensors with improved properties that may be employed for biomedical applications.}, language = {en} } @article{AbouzarIngebrandtPoghossianetal.2009, author = {Abouzar, Maryam H. and Ingebrandt, S. and Poghossian, Arshak and Zhang, Y. and Vu, X. T. and Moritz, W. and Sch{\"o}ning, Michael Josef}, title = {Nanoplate field-effect capacitive (bio-)chemical sensor array based on SOI structure}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, isbn = {1876-6196}, pages = {670 -- 673}, year = {2009}, language = {en} } @incollection{PoghossianWeilandSchoening2014, author = {Poghossian, Arshak and Weiland, Maryam and Sch{\"o}ning, Michael Josef}, title = {Nanoplate field-effect capacitors: a new transducer structure for multiparameter (bio-)chemical sensing}, series = {Multisensor system for chemical analysis : materials and sensors}, booktitle = {Multisensor system for chemical analysis : materials and sensors}, editor = {Lvova, Larisa and Kirsanov, Dmitry and di Natale, Corrado and Legin, Audrey}, edition = {1}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4411-15-8 ; 978-981-4411-16-5}, doi = {10.1201/b15491-11}, pages = {333 -- 373}, year = {2014}, abstract = {An array of electrically isolated nanoplate field-effect silicon-on-insulator (SOI) capacitors as a new transducer structure for multiparameter (bio-)chemical sensing is presented. The proposed approach allows addressable biasing and electrical readout of multiple nanoplate field-effect capacitive (bio-)chemical sensors on the same SOI chip, as well as differential-mode measurements. The realized sensor chip has been applied for pH and penicillin concentration measurements, electrical monitoring of polyelectrolyte multilayer formation, and the label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization and denaturation events.}, language = {en} } @inproceedings{SchoeningAbdelghani2012, author = {Sch{\"o}ning, Michael Josef and Abdelghani, Adnane}, title = {Nanoscale Science and Technology (NS\&T'12) : Proceedings Book Humboldt Kolleg <2012, Tunisia> ; Tunisia, 17-19 March, 2012 / ed. by Michael J. Sch{\"o}ning ; Adnane Abdelghani}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-3544}, year = {2012}, abstract = {Proceedings of the 2nd Humboldt Kolleg, Hammamet, Tunisia Organizer: Alexander von Humboldt Stiftung, Germany. pdf 184 p. Welcome Address Dear Participants, Welcome to the 2nd Humboldt Kolleg in "Nanoscale Science and Technology" (NS\&T'12) in Tunisia, sponsored by the "Alexander von Humboldt" foundation. The NS\&T'12 multidisciplinary scientific program includes seven "hot" topics dealing with "Nanoscale Science and Technology" covering basic and application-oriented research as well as industrial (market) aspects: - Molecular Biophyics, Spectroscopy Techniques, Imaging Microscopy - Nanomaterials Synthesis for Medicine and Bio-chemical Sensors - Nanostructures, Semiconductors, Photonics and Nanodevices - New Technologies in Market Industry - Environment, Electro-chemistry, Bio-polymers and Fuel Cells - Nanomaterials, Photovoltaic, Modelling, Quantum Physics - Microelectronics, Sensors Networks and Embedded Systems We are deeply indebted to all members of the Scientific Committee and General Chairs for joint Sessions and to all speakers and chairmen, who have dedicated invaluable time and efforts for the realization of this event. On behalf of the Organizing Committee, we are cordially inviting you to join the conference and hope that your stay will be fruitful, rewarding and enjoyable. Prof. Dr. Michael J. Sch{\"o}ning, Prof. Dr. Adnane Abdelghani}, subject = {Biosensor}, language = {en} }