@article{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Calculation Methodology for Predicting Exhaust Mass Flows and Exhaust Temperature Profiles for Heavy-Duty Vehicles}, series = {SAE International Journal of Commercial Vehicles}, volume = {13}, journal = {SAE International Journal of Commercial Vehicles}, number = {2}, publisher = {SAE International}, address = {Warrendale, Pa.}, issn = {1946-3928}, doi = {10.4271/02-13-02-0009}, pages = {129 -- 143}, year = {2020}, abstract = {The predictive control of commercial vehicle energy management systems, such as vehicle thermal management or waste heat recovery (WHR) systems, are discussed on the basis of information sources from the field of environment recognition and in combination with the determination of the vehicle system condition. In this article, a mathematical method for predicting the exhaust gas mass flow and the exhaust gas temperature is presented based on driving data of a heavy-duty vehicle. The prediction refers to the conditions of the exhaust gas at the inlet of the exhaust gas recirculation (EGR) cooler and at the outlet of the exhaust gas aftertreatment system (EAT). The heavy-duty vehicle was operated on the motorway to investigate the characteristic operational profile. In addition to the use of road gradient profile data, an evaluation of the continuously recorded distance signal, which represents the distance between the test vehicle and the road user ahead, is included in the prediction model. Using a Fourier analysis, the trajectory of the vehicle speed is determined for a defined prediction horizon. To verify the method, a holistic simulation model consisting of several hierarchically structured submodels has been developed. A map-based submodel of a combustion engine is used to determine the EGR and EAT exhaust gas mass flows and exhaust gas temperature profiles. All simulation results are validated on the basis of the recorded vehicle and environmental data. Deviations from the predicted values are analyzed and discussed.}, language = {en} } @inproceedings{FingerdeVriesVosetal.2020, author = {Finger, Felix and de Vries, Reynard and Vos, Roelof and Braun, Carsten and Bil, Cees}, title = {A comparison of hybrid-electric aircraft sizing methods}, series = {AIAA Scitech 2020 Forum}, booktitle = {AIAA Scitech 2020 Forum}, doi = {10.2514/6.2020-1006}, pages = {31 Seiten}, year = {2020}, language = {en} } @article{Koehler2020, author = {K{\"o}hler, Klemens}, title = {A conflict theory perspective of IT attacks - consequences for IT security education}, number = {Preprint}, year = {2020}, abstract = {Cyberspace is "the environment formed by physical and non-physical components to store, modify, and exchange data using computer networks" (NATO CCDCOE). Beyond that, it is an environment where people interact. IT attacks are hostile, non-cooperative interactions that can be described with conflict theory. Applying conflict theory to IT security leads to different objectives for end-user education, requiring different formats like agency-based competence developing games.}, language = {en} } @article{GossmannThomasHorvathetal.2020, author = {Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {A higher-throughput approach to investigate cardiac contractility in vitro under physiological mechanical conditions}, series = {Journal of Pharmacological and Toxicological Methods}, volume = {105}, journal = {Journal of Pharmacological and Toxicological Methods}, number = {Article 106843}, publisher = {Elsevier}, address = {New York, NY}, doi = {10.1016/j.vascn.2020.106843}, year = {2020}, language = {en} } @inproceedings{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude}, series = {Deutscher Luft- und Raumfahrtkongress 2019, „Luft- und Raumfahrt - technologische Br{\"u}cke in die Zukunft", Darmstadt, 30. September bis 2. Oktober 2019}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, „Luft- und Raumfahrt - technologische Br{\"u}cke in die Zukunft", Darmstadt, 30. September bis 2. Oktober 2019}, publisher = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt - Lilienthal-Oberth e.V}, address = {Bonn}, doi = {10.25967/490162}, pages = {13 Seiten}, year = {2020}, language = {en} } @article{KhayyamJamaliBabHadiasharetal.2020, author = {Khayyam, Hamid and Jamali, Ali and Bab-Hadiashar, Alireza and Esch, Thomas and Ramakrishna, Seeram and Jalili, Mahdi and Naebe, Minoo}, title = {A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modeling with Application in Industry 4.0}, series = {IEEE Access}, volume = {8}, journal = {IEEE Access}, number = {Art. 9108222}, publisher = {IEEE}, address = {New York, NY}, issn = {2169-3536}, doi = {10.1109/ACCESS.2020.2999898}, pages = {111381 -- 111393}, year = {2020}, abstract = {To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements.}, language = {en} } @article{KhayyamJamaliBabHadiasharetal.2020, author = {Khayyam, Hamid and Jamali, Ali and Bab-Hadiashar, Alireza and Esch, Thomas and Ramakrishna, Seeram and Jalil, Mahdi and Naebe, Minoo}, title = {A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modelling with Application in Industry 4.0}, series = {IEEE Access}, journal = {IEEE Access}, publisher = {IEEE}, address = {New York, NY}, isbn = {2169-3536}, doi = {10.1109/ACCESS.2020.2999898}, pages = {1 -- 12}, year = {2020}, abstract = {To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements.}, language = {en} } @article{RoepkeKoehlerDruryetal.2020, author = {Roepke, Rene and K{\"o}hler, Klemens and Drury, Vincent and Schroeder, Ulrik and Wolf, Martin and Meyer, Ulrike}, title = {A pond full of phishing games - analysis of learning games for anti-phishing education}, series = {Model-driven Simulation and Training Environments for Cybersecurity. MSTEC 2020}, journal = {Model-driven Simulation and Training Environments for Cybersecurity. MSTEC 2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-62433-0}, doi = {10.1007/978-3-030-62433-0_32020}, pages = {41 -- 60}, year = {2020}, abstract = {Game-based learning is a promising approach to anti-phishing education, as it fosters motivation and can help reduce the perceived difficulty of the educational material. Over the years, several prototypes for game-based applications have been proposed, that follow different approaches in content selection, presentation, and game mechanics. In this paper, a literature and product review of existing learning games is presented. Based on research papers and accessible applications, an in-depth analysis was conducted, encompassing target groups, educational contexts, learning goals based on Bloom's Revised Taxonomy, and learning content. As a result of this review, we created the publications on games (POG) data set for the domain of anti-phishing education. While there are games that can convey factual and conceptual knowledge, we find that most games are either unavailable, fail to convey procedural knowledge or lack technical depth. Thus, we identify potential areas of improvement for games suitable for end-users in informal learning contexts.}, language = {en} } @inproceedings{PhilippBrillowskiDammersetal.2020, author = {Philipp, Brauner and Brillowski, Florian Sascha and Dammers, Hannah and K{\"o}nigs, Peter and Kordtomeikel, Frauke Carole and Petruck, Henning and Schaar, Anne Kathrin and Schmitz, Seth and Steuer-Dankert, Linda and Mertens, Alexander and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Nitsch, Verena and Schuh, G{\"u}nther and Ziefle, Martina}, title = {A research framework for human aspects in the internet of production: an intra-company perspective}, series = {Advances in Manufacturing, Production Management and Process Control: Proceedings of the AHFE 2020 Virtual Conferences on Human Aspects of Advanced Manufacturing, Advanced Production Management and Process Control, and Additive Manufacturing, Modeling Systems and 3D Prototyping, July 16-20, 2020, USA}, booktitle = {Advances in Manufacturing, Production Management and Process Control: Proceedings of the AHFE 2020 Virtual Conferences on Human Aspects of Advanced Manufacturing, Advanced Production Management and Process Control, and Additive Manufacturing, Modeling Systems and 3D Prototyping, July 16-20, 2020, USA}, editor = {Mrugalska, Beata and Trzcielinski, Stefan and Karwowski, Waldemar and Nicolantonio, Massimo Di and Roossi, Emilio}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-51980-3}, doi = {10.1007/978-3-030-51981-0_1}, pages = {3 -- 17}, year = {2020}, abstract = {Digitalization in the production sector aims at transferring concepts and methods from the Internet of Things (IoT) to the industry and is, as a result, currently reshaping the production area. Besides technological progress, changes in work processes and organization are relevant for a successful implementation of the "Internet of Production" (IoP). Focusing on the labor organization and organizational procedures emphasizes to consider intra-company factors such as (user) acceptance, ethical issues, and ergonomics in the context of IoP approaches. In the scope of this paper, a research approach is presented that considers these aspects from an intra-company perspective by conducting studies on the shop floor, control level and management level of companies in the production area. Focused on four central dimensions—governance, organization, capabilities, and interfaces—this contribution presents a research framework that is focused on a systematic integration and consideration of human aspects in the realization of the IoP.}, language = {en} } @inproceedings{RekePeterSchulteTiggesetal.2020, author = {Reke, Michael and Peter, Daniel and Schulte-Tigges, Joschua and Schiffer, Stefan and Ferrein, Alexander and Walter, Thomas and Matheis, Dominik}, title = {A Self-Driving Car Architecture in ROS2}, series = {2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa}, booktitle = {2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa}, isbn = {978-1-7281-4162-6}, doi = {10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020}, pages = {1 -- 6}, year = {2020}, language = {en} } @inproceedings{EltesterFerreinSchiffer2020, author = {Eltester, Niklas Sebastian and Ferrein, Alexander and Schiffer, Stefan}, title = {A smart factory setup based on the RoboCup logistics league}, series = {2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS)}, booktitle = {2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS)}, publisher = {IEEE}, doi = {10.1109/ICPS48405.2020.9274766}, pages = {297 -- 302}, year = {2020}, abstract = {In this paper we present SMART-FACTORY, a setup for a research and teaching facility in industrial robotics that is based on the RoboCup Logistics League. It is driven by the need for developing and applying solutions for digital production. Digitization receives constantly increasing attention in many areas, especially in industry. The common theme is to make things smart by using intelligent computer technology. Especially in the last decade there have been many attempts to improve existing processes in factories, for example, in production logistics, also with deploying cyber-physical systems. An initiative that explores challenges and opportunities for robots in such a setting is the RoboCup Logistics League. Since its foundation in 2012 it is an international effort for research and education in an intra-warehouse logistics scenario. During seven years of competition a lot of knowledge and experience regarding autonomous robots was gained. This knowledge and experience shall provide the basis for further research in challenges of future production. The focus of our SMART-FACTORY is to create a stimulating environment for research on logistics robotics, for teaching activities in computer science and electrical engineering programmes as well as for industrial users to study and explore the feasibility of future technologies. Building on a very successful history in the RoboCup Logistics League we aim to provide stakeholders with a dedicated facility oriented at their individual needs.}, language = {en} } @article{KetelhutBrueggeGoelletal.2020, author = {Ketelhut, Maike and Br{\"u}gge, G. M. and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Adaptive iterative learning control of an industrial robot during neuromuscular training}, series = {IFAC PapersOnLine}, volume = {53}, journal = {IFAC PapersOnLine}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8963}, doi = {10.1016/j.ifacol.2020.12.741}, pages = {16468 -- 16475}, year = {2020}, abstract = {To prevent the reduction of muscle mass and loss of strength coming along with the human aging process, regular training with e.g. a leg press is suitable. However, the risk of training-induced injuries requires the continuous monitoring and controlling of the forces applied to the musculoskeletal system as well as the velocity along the motion trajectory and the range of motion. In this paper, an adaptive norm-optimal iterative learning control algorithm to minimize the knee joint loadings during the leg extension training with an industrial robot is proposed. The response of the algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee and compared to the results of a higher-order iterative learning control algorithm, a robust iterative learning control and a recently proposed conventional norm-optimal iterative learning control algorithm. Although significant improvements in performance are made compared to the conventional norm-optimal iterative learning control algorithm with a small learning factor, for the developed approach as well as the robust iterative learning control algorithm small steady state errors occur.}, language = {en} } @inproceedings{EggertStanke2020, author = {Eggert, Mathias and Stanke, Max-Alexander}, title = {Adoption of Integrated Voice Assistants in Health Care- Requirements and Design Guidelines}, series = {15th International Conference on Wirtschaftsinformatik, March 08-11, 2020 Potsdam, Germany}, booktitle = {15th International Conference on Wirtschaftsinformatik, March 08-11, 2020 Potsdam, Germany}, doi = {10.30844/wi_2020_k2-eggert}, pages = {1 -- 16}, year = {2020}, language = {en} } @article{BungErpicumTullis2020, author = {Bung, Daniel Bernhard and Erpicum, S{\´e}bastien and Tullis, Blanke P.}, title = {Advances in hydraulic structures engineering}, series = {Journal of Hydraulic Engineering}, volume = {147}, journal = {Journal of Hydraulic Engineering}, number = {1}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429 (Druckausgabe)}, doi = {10.1061/(ASCE)HY.1943-7900.0001851}, pages = {1 Seite}, year = {2020}, language = {en} } @inproceedings{GeibenGoettenHavermann2020, author = {Geiben, Benedikt and G{\"o}tten, Falk and Havermann, Marc}, title = {Aerodynamic analysis of a winged sub-orbital spaceplane}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2020}, year = {2020}, language = {en} } @article{MoratFaudeHanssenetal.2020, author = {Morat, Mareike and Faude, Oliver and Hanssen, Henner and Ludyga, Sebastian and Zacher, Jonas and Eibl, Angi and Albracht, Kirsten and Donath, Lars}, title = {Agility Training to Integratively Promote Neuromuscular, Cognitive, Cardiovascular and Psychosocial Function in Healthy Older Adults: A Study Protocol of a One-Year Randomized-Controlled Trial}, series = {International Journal of Environmental Research and Public Health}, volume = {17}, journal = {International Journal of Environmental Research and Public Health}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1660-4601}, doi = {10.3390/ijerph17061853}, pages = {1 -- 14}, year = {2020}, abstract = {Exercise training effectively mitigates aging-induced health and fitness impairments. Traditional training recommendations for the elderly focus separately on relevant physiological fitness domains, such as balance, flexibility, strength and endurance. Thus, a more holistic and functional training framework is needed. The proposed agility training concept integratively tackles spatial orientation, stop and go, balance and strength. The presented protocol aims at introducing a two-armed, one-year randomized controlled trial, evaluating the effects of this concept on neuromuscular, cardiovascular, cognitive and psychosocial health outcomes in healthy older adults. Eighty-five participants were enrolled in this ongoing trial. Seventy-nine participants completed baseline testing and were block-randomized to the agility training group or the inactive control group. All participants undergo pre- and post-testing with interim assessment after six months. The intervention group currently receives supervised, group-based agility training twice a week over one year, with progressively demanding perceptual, cognitive and physical exercises. Knee extension strength, reactive balance, dual task gait speed and the Agility Challenge for the Elderly (ACE) serve as primary endpoints and neuromuscular, cognitive, cardiovascular, and psychosocial meassures serve as surrogate secondary outcomes. Our protocol promotes a comprehensive exercise training concept for older adults, that might facilitate stakeholders in health and exercise to stimulate relevant health outcomes without relying on excessively time-consuming physical activity recommendations.}, language = {en} } @article{GoettenHavermannBraunetal.2020, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Airfoil drag at low-to-medium reynolds numbers: A novel estimation method}, series = {AIAA Journal}, volume = {58}, journal = {AIAA Journal}, number = {7}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-385X}, doi = {10.2514/1.J058983}, pages = {2791 -- 2805}, year = {2020}, abstract = {This paper presents a novel method for airfoil drag estimation at Reynolds numbers between 4×10⁵ and 4×10⁶. The novel method is based on a systematic study of 40 airfoils applying over 600 numerical simulations and considering natural transition. The influence of the airfoil thickness-to-chord ratio, camber, and freestream Reynolds number on both friction and pressure drag is analyzed in detail. Natural transition significantly affects drag characteristics and leads to distinct drag minima for different Reynolds numbers and thickness-to-chord ratios. The results of the systematic study are used to develop empirical correlations that can accurately predict an airfoil drag at low-lift conditions. The new approach estimates a transition location based on airfoil thickness-to-chord ratio, camber, and Reynolds number. It uses the transition location in a mixed laminar-turbulent skin-friction calculation, and corrects the skin-friction coefficient for separation effects. Pressure drag is estimated separately based on correlations of thickness-to-chord ratio, camber, and Reynolds number. The novel method shows excellent accuracy when compared with wind-tunnel measurements of multiple airfoils. It is easily integrable into existing aircraft design environments and is highly beneficial in the conceptual design stage.}, language = {en} } @article{AbelKahmannMellonetal.2020, author = {Abel, Alexander and Kahmann, Stephanie Lucina and Mellon, Stephen and Staat, Manfred and Jung, Alexander}, title = {An open-source tool for the validation of finite element models using three-dimensional full-field measurements}, series = {Medical Engineering \& Physics}, volume = {77}, journal = {Medical Engineering \& Physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, doi = {10.1016/j.medengphy.2019.10.015}, pages = {125 -- 129}, year = {2020}, abstract = {Three-dimensional (3D) full-field measurements provide a comprehensive and accurate validation of finite element (FE) models. For the validation, the result of the model and measurements are compared based on two respective point-sets and this requires the point-sets to be registered in one coordinate system. Point-set registration is a non-convex optimization problem that has widely been solved by the ordinary iterative closest point algorithm. However, this approach necessitates a good initialization without which it easily returns a local optimum, i.e. an erroneous registration. The globally optimal iterative closest point (Go-ICP) algorithm has overcome this drawback and forms the basis for the presented open-source tool that can be used for the validation of FE models using 3D full-field measurements. The capability of the tool is demonstrated using an application example from the field of biomechanics. Methodological problems that arise in real-world data and the respective implemented solution approaches are discussed.}, language = {en} } @inproceedings{DinghoferHartung2020, author = {Dinghofer, Kai and Hartung, Frank}, title = {Analysis of Criteria for the Selection of Machine Learning Frameworks}, series = {2020 International Conference on Computing, Networking and Communications (ICNC)}, booktitle = {2020 International Conference on Computing, Networking and Communications (ICNC)}, doi = {10.1109/ICNC47757.2020.9049650}, pages = {373 -- 377}, year = {2020}, language = {en} } @inproceedings{ChavezBermudezWollert2020, author = {Chavez Bermudez, Victor Francisco and Wollert, J{\"o}rg}, title = {Arduino based Framework for Rapid Application Development of a Generic IO-Link interface}, series = {Kommunikation und Bildverarbeitung in der Automation}, booktitle = {Kommunikation und Bildverarbeitung in der Automation}, publisher = {Springer Vieweg}, address = {Berlin}, isbn = {978-3-662-59895-5}, doi = {10.1007/978-3-662-59895-5_2}, pages = {21 -- 33}, year = {2020}, abstract = {The implementation of IO-Link in the automation industry has increased over the years. Its main advantage is it offers a digital point-to-point plugand-play interface for any type of device or application. This simplifies the communication between devices and increases productivity with its different features like self-parametrization and maintenance. However, its complete potential is not always used. The aim of this paper is to create an Arduino based framework for the development of generic IO-Link devices and increase its implementation for rapid prototyping. By generating the IO device description file (IODD) from a graphical user interface, and further customizable options for the device application, the end-user can intuitively develop generic IO-Link devices. The peculiarity of this framework relies on its simplicity and abstraction which allows to implement any sensor functionality and virtually connect any type of device to an IO-Link master. This work consists of the general overview of the framework, the technical background of its development and a proof of concept which demonstrates the workflow for its implementation.}, language = {en} }