@incollection{Mertens1997, author = {Mertens, Josef}, title = {Aerodynamic multi point design challenge}, series = {New design concepts for high speed air transport.- (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, booktitle = {New design concepts for high speed air transport.- (Courses and lectures / International Centre for Mechanical Sciences ; 366)}, editor = {Sobieczky, H.}, publisher = {Springer}, address = {Wien [u.a.]}, isbn = {3-2118-2815-X}, doi = {10.1007/978-3-7091-2658-5_4}, pages = {53 -- 67}, year = {1997}, abstract = {In the chapter "Son of Concorde, a Technology Challenge" one of the new challenges for a Supersonic Commercial Transport (SCT) is multi-point design for the four main design points: - supersonic cruise - transonic cruise - take-off and landing - transonic acceleration.}, language = {en} } @article{GerhardtKonrathKrameretal.1992, author = {Gerhardt, Hans Joachim and Konrath, B. and Kramer, C. and Oliveira, L.-A.}, title = {Aerodynamische Abdichtung von Anlagen f{\"u}r die Bandbearbeitung}, series = {Blech, Rohre, Profile. 39 (1992), H. 1}, journal = {Blech, Rohre, Profile. 39 (1992), H. 1}, isbn = {0006-4688}, pages = {39 -- 1}, year = {1992}, language = {de} } @techreport{BohnFunkeWolffetal.2002, author = {Bohn, Dieter and Funke, Harald and Wolff, M. and S{\"u}rken, N.}, title = {Aerodynamische Entlastung der Schaufelspalte durch Konturierung des Meridiankanals [Abschlussbericht]}, organization = {Forschungsvereinigung Verbrennungskraftmaschinen (FVV)}, year = {2002}, abstract = {Abschlussbericht {\"u}ber das Vorhaben Nr. 688 (FVV-Nr. 066880). Laufzeit 01.04.2000 bis 31.03.2001. Heft R 516 (2002). 24 S. Informationstagung Turbinen, Fr{\"u}hjahr 2002, Frankfurt-M{\"o}hrfelden}, subject = {Str{\"o}mungsmaschine}, language = {de} } @techreport{BohnFunkeSuerken2000, author = {Bohn, Dieter and Funke, Harald and S{\"u}rken, N.}, title = {Aerodynamische Entlastung der Schaufelspalte durch Konturierung des Meridiankanals [Zwischenbericht]}, organization = {Forschungsvereinigung Verbrennungskraftmaschinen (FVV)}, year = {2000}, abstract = {Zwischenbericht {\"u}ber das Vorhaben FVV-Nr. 0666880. Laufzeit 01.03.1998 bis 31.03.2000. Heft R 507 (2000) . 19 S. Informationstagung Turbinen, Fr{\"u}hjahr 2000, Frankfurt am Main}, subject = {Str{\"o}mungsmaschine}, language = {de} } @techreport{BohnFunkeMetal.2001, author = {Bohn, Dieter and Funke, Harald and M., Wolff. and S{\"u}rken, N.}, title = {Aerodynamische Entlastung der Schaufelspalte durch Konturierung des Meridiankanals [Zwischenbericht]}, organization = {Forschungsvereinigung Verbrennungskraftmaschinen (FVV)}, year = {2001}, abstract = {Zwischenbericht {\"u}ber das Vorhaben Nr. 688 (FVV-Nr. 066880). Laufzeit 01.04.2000 bis 31.03.2001. Heft R 514 (2001). 21 S. Informationstagung Turbinen, Herbst 2001, Dresden-Radebeul}, subject = {Str{\"o}mungsmaschine}, language = {de} } @techreport{ReimerWellmerBraunetal.2007, author = {Reimer, Lars and Wellmer, Georg and Braun, Carsten and Ballmann, Josef}, title = {Aerodynamische Simulation und Optimierung in der Flugzeugentwicklung. Teilvorhabenbezeichnung: Aerodynamische Optimierung unter Ber{\"u}cksichtigung von Struktureigenschaften auf der Basis reduzierter Strukturmodelle, Verbundvorhaben MEGADESIGN. Schlussbericht. Berichtszeitraum: 01.06.2003-31.05.2007. BMBF-Forschungsbericht}, pages = {41 S.: Ill., graph. Darst.}, year = {2007}, language = {de} } @article{Mertens1998, author = {Mertens, Josef}, title = {Aerodynamische Ziele des Adaptiven Fl{\"u}gels (ADIF).}, series = {DGLR-Jahrbuch 1998 Bd. 1}, journal = {DGLR-Jahrbuch 1998 Bd. 1}, pages = {47 -- 52}, year = {1998}, language = {de} } @article{GerhardtKramer1985, author = {Gerhardt, Hans Joachim and Kramer, C.}, title = {Aerodynamsiche RA-Optimierung}, series = {Zentralblatt fuer Industriebau. 31 (1985), H. 5}, journal = {Zentralblatt fuer Industriebau. 31 (1985), H. 5}, isbn = {0044-4227}, pages = {358 -- 362}, year = {1985}, language = {en} } @incollection{BallmannBouckeBraun2003, author = {Ballmann, Josef and Boucke, Alexander and Braun, Carsten}, title = {Aeroelastic sensitivity in the transonic regime}, series = {Symposium Transsonicum IV : proceedings of the IUTAM symposium held in G{\"o}ttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73}, booktitle = {Symposium Transsonicum IV : proceedings of the IUTAM symposium held in G{\"o}ttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73}, publisher = {Kluwer Academic}, address = {Dordrecht}, isbn = {978-94-010-3998-7}, pages = {225 -- 236}, year = {2003}, language = {en} } @article{GoettenHavermannBraunetal.2020, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Airfoil drag at low-to-medium reynolds numbers: A novel estimation method}, series = {AIAA Journal}, volume = {58}, journal = {AIAA Journal}, number = {7}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-385X}, doi = {10.2514/1.J058983}, pages = {2791 -- 2805}, year = {2020}, abstract = {This paper presents a novel method for airfoil drag estimation at Reynolds numbers between 4×10⁵ and 4×10⁶. The novel method is based on a systematic study of 40 airfoils applying over 600 numerical simulations and considering natural transition. The influence of the airfoil thickness-to-chord ratio, camber, and freestream Reynolds number on both friction and pressure drag is analyzed in detail. Natural transition significantly affects drag characteristics and leads to distinct drag minima for different Reynolds numbers and thickness-to-chord ratios. The results of the systematic study are used to develop empirical correlations that can accurately predict an airfoil drag at low-lift conditions. The new approach estimates a transition location based on airfoil thickness-to-chord ratio, camber, and Reynolds number. It uses the transition location in a mixed laminar-turbulent skin-friction calculation, and corrects the skin-friction coefficient for separation effects. Pressure drag is estimated separately based on correlations of thickness-to-chord ratio, camber, and Reynolds number. The novel method shows excellent accuracy when compared with wind-tunnel measurements of multiple airfoils. It is easily integrable into existing aircraft design environments and is highly beneficial in the conceptual design stage.}, language = {en} } @article{Maurischat2022, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, series = {Journal of Number Theory}, volume = {240}, journal = {Journal of Number Theory}, publisher = {Elsevier}, address = {Orlando, Fla.}, issn = {0022-314X}, doi = {10.1016/j.jnt.2022.01.006}, pages = {145 -- 162}, year = {2022}, language = {en} } @article{Maurischat2021, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, pages = {1 -- 12}, year = {2021}, language = {en} } @incollection{WolffSeefeldtBaueretal.2014, author = {Wolff, Nino and Seefeldt, Patric and Bauer, Wolfgang and Fiebig, Christopher and Gerding, Patrick and Parow-Souchon, Kai and Pongs, Anna and Reiffenrath, Matti and Ziemann, Thomas}, title = {Alternative application of solar sail technology}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, doi = {10.1007/978-3-642-34907-2_23}, pages = {351 -- 365}, year = {2014}, abstract = {The development of Gossamer sail structures for solar sails contributes to a large field of future space applications like thin film solar generators, membrane antennas and drag sails. The focus of this paper is the development of a drag sail based on solar sail technology that could contribute to a reduction of space debris in low Earth orbits. The drag sail design and its connections to solar sail development, a first test on a sounding rocket, as well as the ongoing integration of the drag sail into a triple CubeSat is presented.}, language = {en} } @article{WeiheErnstRoethetal.2013, author = {Weihe, Stefan and Ernst, Ansgar and R{\"o}th, Thilo and Proksch, Johannes}, title = {Aluminium-Stahl-Verbundguss im Nutzfahrzeugbau}, series = {ATZ - Automobiltechnische Zeitschrift}, volume = {115}, journal = {ATZ - Automobiltechnische Zeitschrift}, number = {4}, publisher = {Springer Fachmedien Wiesbaden}, issn = {2192-8800 (Online)}, pages = {312 -- 316}, year = {2013}, abstract = {In modernen Fahrzeugkarosserien der Großserie kommen zunehmend Materialmischbauweisen zur Anwendung. In Zusammenarbeit der Daimler AG, der Tower Automotive Holding GmbH, der Imperia GmbH sowie der Partnerunternehmen KSM Castings GmbH und Schaufler Tooling GmbH \& Co. KG wird das Leichtbaupotenzial von Aluminiumverbundguss-Stahlblech-Hybriden am Beispiel des vorderen Dachquertr{\"a}gers des Mercedes-Benz Viano/Vito ausf{\"u}hrlich untersucht.}, language = {de} } @article{SchaelAtanasyanBerdugoetal.2019, author = {Schael, S. and Atanasyan, A. and Berdugo, J. and Bretz, T. and Czupalla, Markus and Dachwald, Bernd and Doetinchem, P. von and Duranti, M. and Gast, H. and Karpinski, W. and Kirn, T. and L{\"u}belsmeyer, K. and Ma{\~n}a, C. and Marrocchesi, P.S. and Mertsch, P. and Moskalenko, I.V. and Schervan, T. and Schluse, M. and Schr{\"o}der, K.-U. and Schultz von Dratzig, A. and Senatore, C. and Spies, L. and Wakely, S.P. and Wlochal, M. and Uglietti, D. and Zimmermann, J.}, title = {AMS-100: The next generation magnetic spectrometer in space - An international science platform for physics and astrophysics at Lagrange point 2}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {944}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {162561}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-9002}, doi = {10.1016/j.nima.2019.162561}, year = {2019}, language = {en} } @inproceedings{FingerKhalsaKreyeretal.2019, author = {Finger, Felix and Khalsa, R. and Kreyer, J{\"o}rg and Mayntz, Joscha and Braun, Carsten and Dahmann, Peter and Esch, Thomas and Kemper, Hans and Schmitz, O. and Bragard, Michael}, title = {An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft}, series = {Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt}, pages = {15 Seiten}, year = {2019}, abstract = {In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented.}, language = {en} } @article{WeberEnglhardArentetal.2019, author = {Weber, Tobias and Englhard, Markus and Arent, Jan-Christoph and Hausmann, Joachim}, title = {An experimental characterization of wrinkling generated during prepreg autoclave manufacturing using caul plates}, series = {Journal of Composite Materials}, volume = {53}, journal = {Journal of Composite Materials}, number = {26-27}, issn = {1530-793X}, doi = {10.1177/0021998319846556}, pages = {3757 -- 3773}, year = {2019}, language = {en} } @inproceedings{KowalskiBugnion2009, author = {Kowalski, Julia and Bugnion, Louis}, title = {An extended shallow flow theory for natural debris flows}, volume = {41}, number = {7}, pages = {609 -- 609}, year = {2009}, language = {de} } @inproceedings{LoebSchartnerDachwaldetal.2011, author = {Loeb, Horst W. and Schartner, Karl-Heinz and Dachwald, Bernd and Ohndorf, Andreas and Seboldt, Wolfgang}, title = {An Interstellar - Heliopause mission using a combination of solar/radioisotope electric propulsion}, series = {Presented at the 32nd International Electric Propulsion Conference}, booktitle = {Presented at the 32nd International Electric Propulsion Conference}, pages = {1 -- 7}, year = {2011}, abstract = {There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft travelling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by ESA.Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope electric propulsion. As a further alternative, we here investigate a combination of solar-electric propulsion and radioisotope-electric propulsion. The solar-electric propulsion stage consists of six 22 cm diameter "RIT-22"ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW BOM is provided by a light-weight solar array. The REP-stage consists of four space-proven 10 cm diameter "RIT-10" ion thrusters that will be operating one after the other for 9 yrs in total. Four advanced radioisotope generators provide 648 W at BOM. The scientific instrument package is oriented at earlier studies. For its mass and electric power requirement 35 kg and 35 W are assessed, respectively. Optimized trajectory calculations, treated in a separate contribution, are based on our "InTrance" method.The program yields a burn out of the REP stage in a distance of 79.6 AU for a usage of 154 kg of Xe propellant. With a C3 = 45,1 (km/s)2 a heliocentric probe velocity of 10 AU/yr is reached at this distance, provided a close Jupiter gravity assist adds a velocity increment of 2.7 AU/yr. A transfer time of 23.8 yrs results for this scenario requiring about 450 kg Xe for the SEP stage, jettisoned at 3 AU. We interpret the SEP/REP propulsion as a competing alternative to solar sail and ballistic/REP propulsion. Omiting a Jupiter fly-by even allows more launch flexibility, leaving the mission duration in the range of the ESA specification.}, language = {en} } @article{FunkeBeckmannAbanteriba2019, author = {Funke, Harald and Beckmann, Nils and Abanteriba, Sylvester}, title = {An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications}, series = {International Journal of Hydrogen Energy}, volume = {44}, journal = {International Journal of Hydrogen Energy}, number = {13}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-3199}, doi = {10.1016/j.ijhydene.2019.01.161}, pages = {6978 -- 6990}, year = {2019}, language = {en} }