@article{SeifarthGrosseGrossmannetal.2017, author = {Seifarth, Volker and Grosse, Joachim O. and Grossmann, Matthias and Janke, Heinz Peter and Arndt, Patrick and Koch, Sabine and Epple, Matthias and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation}, series = {Journal of Biomaterials Applications}, volume = {32}, journal = {Journal of Biomaterials Applications}, number = {3}, publisher = {Sage}, address = {London}, issn = {1530-8022}, doi = {10.1177/0885328217723178}, pages = {321 -- 330}, year = {2017}, language = {en} } @article{EijckDemmelArtmannetal.2011, author = {Eijck, Lambert van and Demmel, Franz and Artmann, Gerhard and Stadtler, Andreas Maximilian}, title = {Macromolecular dynamics in red blood cells investigated using neutron spectroscopy}, series = {Journal of the Royal Society Interface}, volume = {8}, journal = {Journal of the Royal Society Interface}, number = {57}, publisher = {The Royal Society}, address = {London}, isbn = {1742-5689}, pages = {590 -- 600}, year = {2011}, language = {en} } @article{ArtmannTrzewikSchmidSchoenbein2000, author = {Artmann, Gerhard and Trzewik, J. and Schmid-Sch{\"o}nbein, G. W.}, title = {Investigation on lymphatic endothelial microvalves / Trzewik, J. ; Artmann, G. M. ; Schmid-Sch{\"o}nbein, G. W.}, series = {Biomedizinische Technik = Biomedical Engineering. 45 (2000), H. s1}, journal = {Biomedizinische Technik = Biomedical Engineering. 45 (2000), H. s1}, isbn = {1862-278X}, pages = {521 -- 522}, year = {2000}, language = {en} } @article{ArtmannZhouStacheBuettneretal.2002, author = {Artmann, Gerhard and Zhou-Stache, J. and Buettner, R. and Mittermayer, C. [u.a.]}, title = {Inhibition of TNF-alpha induced cell death in HUVEC and Jurkat cells by protocatechuic acid. Zhou-Stache, J.; Buettner, R.; Artmann, Gerhard Michael; Mittermayer, C.; Bosserhoff, A. K.}, series = {Medical and Biological Engineering and Computing. 40 (2002), H. 6}, journal = {Medical and Biological Engineering and Computing. 40 (2002), H. 6}, isbn = {0140-0118}, pages = {698 -- 703}, year = {2002}, language = {en} } @article{ArtmannSchmidSchoenbeinSchroederetal.1988, author = {Artmann, Gerhard and Schmid-Sch{\"o}nbein, H. and Schr{\"o}der, Susanne and Grebe, R. [u.a.]}, title = {Influence of Moxaverine-HCL on Membrane Curvature and Microsieve Filterability of Red Cells after Exposure to Hyperosmolarity and Lactacidosis. Schmid-Sch{\"o}nbein, H.; Schr{\"o}der, Susanne; Grebe, R.; Artmann, Gerhard Michael, Eschweiler, H; Teitel, P.}, series = {Arzneimittelforschung. 38 (1988), H. 5}, journal = {Arzneimittelforschung. 38 (1988), H. 5}, isbn = {0004-4172}, pages = {710 -- 716}, year = {1988}, language = {en} } @inproceedings{DigelLeimenaDachwaldetal.2010, author = {Digel, Ilya and Leimena, W. and Dachwald, Bernd and Linder, Peter and Porst, Dariusz and Kayser, Peter and Funke, O. and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {In-situ biological decontamination of an ice melting probe : [abstract]}, year = {2010}, abstract = {The objective of our study was to investigate the efficacy of different in-situ decontamination protocols in the conditions of thermo-mechanical ice-melting.}, subject = {Sonde}, language = {en} } @article{ArtmannGorbatenkovaPanasenko2000, author = {Artmann, Gerhard and Gorbatenkova, E. A. and Panasenko, O. M.}, title = {Hypochlorous acid and human blood low density lipoproteins modified by hypochlorous acid increase erythrocyte adhesion to endothelial cells. Gorbatenkova, E. A.; Artmann, Gerhard Michael; Panasenko, O. M.}, series = {Membrane and cell biology. 13 (2000), H. 4}, journal = {Membrane and cell biology. 13 (2000), H. 4}, isbn = {1023-6597}, pages = {537 -- 546}, year = {2000}, language = {en} } @techreport{Artmann2011, author = {Artmann, Gerhard}, title = {HPBioforce: Integrierte und automatisierte Screening Plattform eines 96-Well-Hochdurchsatz-Testsystems zur funktionellen Kraftmessung an einige um dicken Zell- und Gewebeschichten f{\"u}r die Arzneimittelforschung : gemeinsamer Abschlussbericht der FH Aachen, Hitec Zang GmbH, IKFE Mainz, IKFE Berlin und der Dr. Gerhard Schmidt GmbH zum InnoNet-Projekt ... ; Programm "F{\"o}rderung von innovativen Netzwerken" (InnoNet) des Bundesministerium f{\"u}r Wirtschaft und Technologie (BMWi) ; Laufzeit: 01.05.2007 bis 31.12.2010}, publisher = {Technische Informationsbibliothek u. Universit{\"a}tsbibliothek}, address = {Aachen [u.a.]}, doi = {10.2314/GBV:68757076X}, year = {2011}, language = {de} } @article{LinderDigelTemizArtmannetal.2007, author = {Linder, Peter and Digel, Ilya and Temiz Artmann, Ayseg{\"u}l and Kayser, Peter and Porst, Dariusz and Artmann, Gerhard}, title = {High-throughput testing of mechanical forces generated in thin cell and tissue layers}, series = {Tissue Engineering. 13 (2007), H. 7}, journal = {Tissue Engineering. 13 (2007), H. 7}, isbn = {1076-3279}, pages = {1778 -- 1778}, year = {2007}, language = {en} } @article{LiShiLandsmannetal.1998, author = {Li, Anlan and Shi, Young de and Landsmann, B. and Schankowski-Bouvier, P. and Dikta, Gerhard and Bauer, U. and Artmann, Gerhard}, title = {Hemorheology and walking distance of Peripheral Arterial Occlusive Disease patients during treatment with Ginkgo-biloba extract}, series = {Acta Pharmacologica Sinica = ZHONGUO YAOLI XUEBAO. 19 (1998), H. 5}, journal = {Acta Pharmacologica Sinica = ZHONGUO YAOLI XUEBAO. 19 (1998), H. 5}, isbn = {1745-7254}, pages = {417 -- 421}, year = {1998}, language = {en} } @article{ArtmannZerlinDigel2008, author = {Artmann, Gerhard and Zerlin, Kay and Digel, Ilya}, title = {Hemoglobin Senses Body Temperature}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {415 -- 447}, year = {2008}, language = {en} } @article{ArtmannDigelZerlinetal.2009, author = {Artmann, Gerhard and Digel, Ilya and Zerlin, Kay and Maggakis-Kelemen, Christina and Linder, Peter and Porst, Dariusz and Kayser, Peter and Stadler, David and Dikta, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Hemoglobin senses body temperature}, series = {European Biophysics Journal}, volume = {38}, journal = {European Biophysics Journal}, number = {5}, isbn = {0175-7571}, pages = {589 -- 600}, year = {2009}, language = {en} } @article{StadlerDigelArtmannetal.2008, author = {Stadler, A. M. and Digel, Ilya and Artmann, Gerhard and Embs, Jan P. and Zaccai, Joe and B{\"u}ldt, Georg}, title = {Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature}, series = {Biophysical Journal. 95 (2008), H. 11}, journal = {Biophysical Journal. 95 (2008), H. 11}, isbn = {1542-0086}, pages = {5449 -- 5461}, year = {2008}, language = {en} } @incollection{DuongSeifarthTemizArtmannetal.2018, author = {Duong, Minh Tuan and Seifarth, Volker and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Staat, Manfred}, title = {Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_9}, pages = {209 -- 232}, year = {2018}, abstract = {Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries.}, language = {en} } @article{ArtmannSchikarsky1993, author = {Artmann, Gerhard and Schikarsky, C.}, title = {Ginkgo Biloba extract (EGb 761) protects red blood cells from oxidative damage. Artmann, Gerhard Michael; Schikarsky, C.}, series = {Clinical Hemorheology. 13 (1993), H. 4}, journal = {Clinical Hemorheology. 13 (1993), H. 4}, isbn = {0271-5198}, pages = {529 -- 539}, year = {1993}, language = {en} } @article{KurulganDemirciDemirciTrzewiketal.2011, author = {Kurulgan Demirci, Eylem and Demirci, T. and Trzewik, J{\"u}rgen and Linder, Peter and Karakulah, G. and Artmann, Gerhard and Sakizli, M. and Temiz Artmann, Ayseg{\"u}l}, title = {Genome-Wide Gene Expression Analysis of NIH 3T3 Cell Line Under Mechanical Stimulation}, series = {Cellular and molecular bioengineering. 4 (2011), H. 1}, journal = {Cellular and molecular bioengineering. 4 (2011), H. 1}, publisher = {Springer}, address = {Berlin}, isbn = {1865-5025}, pages = {46 -- 55}, year = {2011}, language = {en} } @article{DemirciKurulganDemirciTrzewiketal.2009, author = {Demirci, Taylan and Kurulgan Demirci, Eylem and Trzewik, J{\"u}rgen and Linder, Peter and Digel, Ilya and Artmann, Gerhard and Sakizli, Meral and Temiz Artmann, Ayseg{\"u}l}, title = {Gene expression profile analysis of 3T3/NIH fibroblasts after one hour mechanical stress}, series = {IUBMB Life. 61 (2009), H. 3}, journal = {IUBMB Life. 61 (2009), H. 3}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {1521-6543}, pages = {311 -- 312}, year = {2009}, language = {en} } @incollection{ArtmannMeruvuKizildagetal.2018, author = {Artmann, Gerhard and Meruvu, Haritha and Kizildag, Sefa and Temiz Artmann, Ayseg{\"u}l}, title = {Functional Toxicology and Pharmacology Test of Cell Induced Mechanical Tensile Stress in 2D and 3D Tissue Cultures}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_7}, pages = {157 -- 192}, year = {2018}, abstract = {Mechanical forces/tensile stresses are critical determinants of cellular growth, differentiation and migration patterns in health and disease. The innovative "CellDrum technology" was designed for measuring mechanical tensile stress of cultured cell monolayers/thin tissue constructs routinely. These are cultivated on very thin silicone membranes in the so-called CellDrum. The cell layers adhere firmly to the membrane and thus transmit the cell forces generated. A CellDrum consists of a cylinder which is sealed from below with a 4 μm thick, biocompatible, functionalized silicone membrane. The weight of cell culture medium bulbs the membrane out downwards. Membrane indentation is measured. When cells contract due to drug action, membrane, cells and medium are lifted upwards. The induced indentation changes allow for lateral drug induced mechanical tension quantification of the micro-tissues. With hiPS-induced (human) Cardiomyocytes (CM) the CellDrum opens new perspectives of individualized cardiac drug testing. Here, monolayers of self-beating hiPS-CMs were grown in CellDrums. Rhythmic contractions of the hiPS-cells induce membrane up-and-down deflections. The recorded cycles allow for single beat amplitude, single beat duration, integration of the single beat amplitude over the beat time and frequency analysis. Dose effects of agonists and antagonists acting on Ca2+ channels were sensitively and highly reproducibly observed. Data were consistent with published reference data as far as they were available. The combination of the CellDrum technology with hiPS-Cardiomyocytes offers a fast, facile and precise system for pharmacological and toxicological studies. It allows new preclinical basic as well as applied research in pharmacolgy and toxicology.}, language = {en} } @article{ArtmannZang1990, author = {Artmann, Gerhard and Zang, Werner}, title = {Fully automatic measurement of rheologic parameters of red blood cells = Laborautomat zur Messung mechanischer Eigenschaften roter Blutzellen}, series = {Biomedizinische Technik = Biomedical engineering. 35 (1990), H. Suppl. 3}, journal = {Biomedizinische Technik = Biomedical engineering. 35 (1990), H. Suppl. 3}, isbn = {0013-5585}, pages = {94 -- 96}, year = {1990}, language = {en} } @article{StadlerDigelEmbsetal.2009, author = {Stadler, Andreas M. and Digel, Ilya and Embs, Jan P. and Unruh, Tobias and Tehei, M. and Zaccai, G. and B{\"u}ldt, G. and Artmann, Gerhard}, title = {From powder to solution : Hydration dependence of human hemoglobin dynamics correlated to body temperature}, series = {Biophysical Journal. 96 (2009), H. 12}, journal = {Biophysical Journal. 96 (2009), H. 12}, publisher = {Cell Press}, address = {Cambridge, Mass.}, isbn = {0006-3495}, pages = {5073 -- 5081}, year = {2009}, language = {en} }