@article{IkenKirsanovLeginetal.2012, author = {Iken, Heiko and Kirsanov, D. and Legin, A. and Sch{\"o}ning, Michael Josef}, title = {Novel Thin-Film Polymeric Materials for the Detection of Heavy Metals}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.148}, pages = {322 -- 325}, year = {2012}, abstract = {A variety of transition metals, e.g., copper, zinc, cadmium, lead, etc. are widely used in industry as components for wires, coatings, alloys, batteries, paints and so on. The inevitable presence of transition metals in industrial processes implies the ambition of developing a proper analytical technique for their adequate monitoring. Most of these elements, especially lead and cadmium, are acutely toxic for biological organisms. Quantitative determination of these metals at low activity levels in different environmental and industrial samples is therefore a vital task. A promising approach to achieve an at-side or on-line monitoring on a miniaturized and cost efficient way is the combination of a common potentiometric sensor array with heavy metal-sensitive thin-film materials, like chalcogenide glasses and polymeric materials, respectively.}, language = {en} } @article{GuoSekiMiyamotoetal.2014, author = {Guo, Yuanyuan and Seki, Kosuke and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Novel photoexcitation method for light-addressable potentiometric sensor with higher spatial resolution}, series = {Applied physics express : APEX}, volume = {7}, journal = {Applied physics express : APEX}, number = {6}, publisher = {IOP}, address = {Bristol}, issn = {1882-0786 (E-Journa); 1882-0778 (Print)}, doi = {10.7567/APEX.7.067301}, pages = {067301-4}, year = {2014}, abstract = {A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) is proposed to achieve a higher spatial resolution of chemical images. The proposed method employs a combined light source that consists of a modulated light probe, which generates the alternating photocurrent signal, and a ring of constant illumination surrounding it. The constant illumination generates a sheath of carriers with increased concentration which suppresses the spread of photocarriers by enhanced recombination. A device simulation was carried out to verify the effect of constant illumination on the spatial resolution, which demonstrated that a higher spatial resolution can be obtained.}, language = {en} } @inproceedings{AridaKloockSchoening2006, author = {Arida, Hassan A. and Kloock, Joachim P. and Sch{\"o}ning, Michael Josef}, title = {Novel organic membrane-based thin-film microsensors for the determination of heavy metal cations}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1545}, year = {2006}, abstract = {A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thinfilm sensors.}, subject = {Biosensor}, language = {en} } @article{SchoeningMalkocThustetal.2000, author = {Sch{\"o}ning, Michael Josef and Malkoc, {\"U}. and Thust, M. and Steffen, A. and Kordos, P. and L{\"u}th, H.}, title = {Novel electrochemical sensors with structured and porous semiconductor/insulator capacitors}, series = {Sensors and Actuators B. 65 (2000), H. 1-3}, journal = {Sensors and Actuators B. 65 (2000), H. 1-3}, isbn = {0925-4005}, pages = {288 -- 290}, year = {2000}, language = {en} } @article{SchoeningMalkocThustetal.1998, author = {Sch{\"o}ning, Michael Josef and Malkoc, {\"U}. and Thust, M. and Steffen, A. and Kordos, P. and L{\"u}th, H.}, title = {Novel electrochemical sensors with structured and porous semiconductor/insulator capacitors}, series = {Proceedings of the Seventh International Meeting on Chemical Sensors : 27 - 30 July, 1998, Beijing, P. R. China / ed. Zhi-Gang Zhou}, journal = {Proceedings of the Seventh International Meeting on Chemical Sensors : 27 - 30 July, 1998, Beijing, P. R. China / ed. Zhi-Gang Zhou}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, pages = {885 -- 887}, year = {1998}, language = {en} } @article{SchoeningLueth2001, author = {Sch{\"o}ning, Michael Josef and L{\"u}th, H.}, title = {Novel concepts for silicon-based biosensors}, series = {Physica Status Solidi (A) (2001)}, journal = {Physica Status Solidi (A) (2001)}, isbn = {0031-8965}, pages = {65 -- 77}, year = {2001}, language = {en} } @article{PoghossianBerndsenLuethetal.2001, author = {Poghossian, Arshak and Berndsen, Lars and L{\"u}th, Hans and Sch{\"o}ning, Michael Josef}, title = {Novel concepts for flow-rate and flow-direction determination by means of pH-sensitive ISFETs}, series = {Proceedings of SPIE. 4560 (2001)}, journal = {Proceedings of SPIE. 4560 (2001)}, pages = {19 -- 27}, year = {2001}, language = {en} } @article{WagnerMiyamotoSchoeningetal.2010, author = {Wagner, Torsten and Miyamoto, Ko-ichiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Novel combination of digital light processing (DLP) and light-addressable potentiometric sensors (LAPS) for flexible chemical imaging}, series = {Procedia Engineering. 5 (2010)}, journal = {Procedia Engineering. 5 (2010)}, isbn = {1877-7058}, pages = {520 -- 523}, year = {2010}, language = {en} } @article{Schoening2002, author = {Sch{\"o}ning, Michael Josef}, title = {Novel approaches to design siliconbased field-effect sensors}, series = {Electrochemical Microsystem Technologies, New Trends in Electrochemistry Vol. 2}, journal = {Electrochemical Microsystem Technologies, New Trends in Electrochemistry Vol. 2}, publisher = {Taylor \& Francis}, address = {London New York}, pages = {384 -- 408}, year = {2002}, language = {en} } @article{KarschuckFilipovBollellaetal.2019, author = {Karschuck, T. L. and Filipov, Y. and Bollella, P. and Sch{\"o}ning, Michael Josef and Katz, E.}, title = {Not-XOR (NXOR) logic gate based on an enzyme-catalyzed reaction}, series = {International Journal of Unconventional Computing}, volume = {14}, journal = {International Journal of Unconventional Computing}, number = {3-4}, publisher = {Old City Publishing}, address = {Philadelphia}, issn = {1548-7199}, pages = {235 -- 242}, year = {2019}, abstract = {Enzyme-catalyzed reactions have been designed to mimic various Boolean logic gates in the general framework of unconventional biomolecular computing. While some of the logic gates, particularly OR, AND, are easy to realize with biocatalytic reactions and have been reported in numerous publications, some other, like NXOR, are very challenging and have not been realized yet with enzyme reactions. The paper reports on a novel approach to mimicking the NXOR logic gate using the bell-shaped enzyme activity dependent on pH values. Shifting pH from the optimum value to the acidic or basic values by using acid or base inputs (meaning 1,0 and 0,1 inputs) inhibits the enzyme reaction, while keeping the optimum pH (assuming 0,0 and 1,1 input combinations) preserves a high enzyme activity. The challenging part of the present approach is the selection of an enzyme with a well-demonstrated bell-shape activity dependence on the pH value. While many enzymes can satisfy this condition, we selected pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as this enzyme has the optimum pH center-located on the pH scale allowing the enzyme activity change by the acidic and basic pH shift from the optimum value corresponding to the highest activity. The present NXOR gate is added to the biomolecular "toolbox" as a new example of Boolean logic gates based on enzyme reactions.}, language = {en} } @article{AridaAlhaddadSchoening2011, author = {Arida, Hassan A. and Al-haddad, Ameera and Sch{\"o}ning, Michael Josef}, title = {New Solid-State Organic Membrane Based Lead-Selective Micro-Electrode}, series = {International Journal of Electrochemical Science. 6 (2011), H. 9}, journal = {International Journal of Electrochemical Science. 6 (2011), H. 9}, isbn = {1452-3981}, pages = {3858 -- 3867}, year = {2011}, language = {en} } @article{SimonisLuethWangetal.2004, author = {Simonis, A. and L{\"u}th, H. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems}, series = {Sensors and Actuators B. 103 (2004), H. 1-2}, journal = {Sensors and Actuators B. 103 (2004), H. 1-2}, isbn = {0925-4005}, pages = {429 -- 435}, year = {2004}, language = {en} } @inproceedings{SchoeningAbdelghani2012, author = {Sch{\"o}ning, Michael Josef and Abdelghani, Adnane}, title = {Nanoscale Science and Technology (NS\&T'12) : Proceedings Book Humboldt Kolleg <2012, Tunisia> ; Tunisia, 17-19 March, 2012 / ed. by Michael J. Sch{\"o}ning ; Adnane Abdelghani}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-3544}, year = {2012}, abstract = {Proceedings of the 2nd Humboldt Kolleg, Hammamet, Tunisia Organizer: Alexander von Humboldt Stiftung, Germany. pdf 184 p. Welcome Address Dear Participants, Welcome to the 2nd Humboldt Kolleg in "Nanoscale Science and Technology" (NS\&T'12) in Tunisia, sponsored by the "Alexander von Humboldt" foundation. The NS\&T'12 multidisciplinary scientific program includes seven "hot" topics dealing with "Nanoscale Science and Technology" covering basic and application-oriented research as well as industrial (market) aspects: - Molecular Biophyics, Spectroscopy Techniques, Imaging Microscopy - Nanomaterials Synthesis for Medicine and Bio-chemical Sensors - Nanostructures, Semiconductors, Photonics and Nanodevices - New Technologies in Market Industry - Environment, Electro-chemistry, Bio-polymers and Fuel Cells - Nanomaterials, Photovoltaic, Modelling, Quantum Physics - Microelectronics, Sensors Networks and Embedded Systems We are deeply indebted to all members of the Scientific Committee and General Chairs for joint Sessions and to all speakers and chairmen, who have dedicated invaluable time and efforts for the realization of this event. On behalf of the Organizing Committee, we are cordially inviting you to join the conference and hope that your stay will be fruitful, rewarding and enjoyable. Prof. Dr. Michael J. Sch{\"o}ning, Prof. Dr. Adnane Abdelghani}, subject = {Biosensor}, language = {en} } @incollection{PoghossianWeilandSchoening2014, author = {Poghossian, Arshak and Weiland, Maryam and Sch{\"o}ning, Michael Josef}, title = {Nanoplate field-effect capacitors: a new transducer structure for multiparameter (bio-)chemical sensing}, series = {Multisensor system for chemical analysis : materials and sensors}, booktitle = {Multisensor system for chemical analysis : materials and sensors}, editor = {Lvova, Larisa and Kirsanov, Dmitry and di Natale, Corrado and Legin, Audrey}, edition = {1}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4411-15-8 ; 978-981-4411-16-5}, doi = {10.1201/b15491-11}, pages = {333 -- 373}, year = {2014}, abstract = {An array of electrically isolated nanoplate field-effect silicon-on-insulator (SOI) capacitors as a new transducer structure for multiparameter (bio-)chemical sensing is presented. The proposed approach allows addressable biasing and electrical readout of multiple nanoplate field-effect capacitive (bio-)chemical sensors on the same SOI chip, as well as differential-mode measurements. The realized sensor chip has been applied for pH and penicillin concentration measurements, electrical monitoring of polyelectrolyte multilayer formation, and the label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization and denaturation events.}, language = {en} } @article{AbouzarIngebrandtPoghossianetal.2009, author = {Abouzar, Maryam H. and Ingebrandt, S. and Poghossian, Arshak and Zhang, Y. and Vu, X. T. and Moritz, W. and Sch{\"o}ning, Michael Josef}, title = {Nanoplate field-effect capacitive (bio-)chemical sensor array based on SOI structure}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, isbn = {1876-6196}, pages = {670 -- 673}, year = {2009}, language = {en} } @incollection{PoghossianSchoening2017, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Nanomaterial-Modified Capacitive Field-Effect Biosensors}, series = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, booktitle = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, publisher = {Springer}, address = {Berlin, Heidelberg}, doi = {10.1007/5346_2017_2}, pages = {1 -- 25}, year = {2017}, abstract = {The coupling of charged molecules, nanoparticles, and more generally, inorganic/organic nanohybrids with semiconductor field-effect devices based on an electrolyte-insulator-semiconductor (EIS) system represents a very promising strategy for the active tuning of electrochemical properties of these devices and, thus, opening new opportunities for label-free biosensing by the intrinsic charge of molecules. The simplest field-effect sensor is a capacitive EIS sensor, which represents a (bio-)chemically sensitive capacitor. In this chapter, selected examples of recent developments in the field of label-free biosensing using nanomaterial-modified capacitive EIS sensors are summarized. In the first part, we present applications of EIS sensors modified with negatively charged gold nanoparticles for the label-free electrostatic detection of positively charged small proteins and macromolecules, for monitoring the layer-by-layer formation of oppositely charged polyelectrolyte (PE) multilayers as well as for the development of an enzyme-based biomolecular logic gate. In the second part, examples of a label-free detection by means of EIS sensors modified with a positively charged weak PE layer are demonstrated. These include electrical detection of on-chip and in-solution hybridized DNA (deoxyribonucleic acid) as well as an EIS sensor with pH-responsive weak PE/enzyme multilayers for enhanced field-effect biosensing.}, language = {en} } @article{MoraisGomesSilvaetal.2017, author = {Morais, Paulo V. and Gomes, Vanderley F., Jr. and Silva, Anielle C. A. and Dantas, Noelio O. and Sch{\"o}ning, Michael Josef and Siqueira, Jos{\´e} R., Jr.}, title = {Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices}, series = {Journal of Materials Science}, volume = {52}, journal = {Journal of Materials Science}, number = {20}, publisher = {Springer}, address = {Berlin}, issn = {1573-4803}, doi = {10.1007/s10853-017-1369-y}, pages = {12314 -- 12325}, year = {2017}, abstract = {The incorporation of nanomaterials that are biocompatible with different types of biological compounds has allowed the development of a new generation of biosensors applied especially in the biomedical field. In particular, the integration of film-based nanomaterials employed in field-effect devices can be interesting to develop biosensors with enhanced properties. In this paper, we studied the fabrication of sensitive nanofilms combining ZnO nanocrystals and carbon nanotubes (CNTs), prepared by means of the layer-by-layer (LbL) technique, in a capacitive electrolyte-insulator-semiconductor (EIS) structure for detecting glucose and urea. The ZnO nanocrystals were incorporated in a polymeric matrix of poly(allylamine) hydrochloride (PAH), and arranged with multi-walled CNTs in a LbL PAH-ZnO/CNTs film architecture onto EIS chips. The electrochemical characterizations were performed by capacitance-voltage and constant capacitance measurements, while the morphology of the films was characterized by atomic force microscopy. The enzymes glucose oxidase and urease were immobilized on film's surface for detection of glucose and urea, respectively. In order to obtain glucose and urea biosensors with optimized amount of sensitive films, we investigated the ideal number of bilayers for each detection system. The glucose biosensor showed better sensitivity and output signal for an LbL PAH-ZnO/CNTs nanofilm with 10 bilayers. On the other hand, the urea biosensor presented enhanced properties even for the first bilayer, exhibiting high sensitivity and output signal. The presence of the LbL PAH-ZnO/CNTs films led to biosensors with better sensitivity and enhanced response signal, demonstrating that the adequate use of nanostructured films is feasible for proof-of-concept biosensors with improved properties that may be employed for biomedical applications.}, language = {en} } @article{PoghossianAbouzarRazavietal.2009, author = {Poghossian, Arshak and Abouzar, Maryam H. and Razavi, A. and B{\"a}cker, Matthias and Bijnens, N. and Williams, O. A. and Haenen, K. and Moritz, W. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO2 structure}, series = {Electrochimica Acta. 54 (2009), H. 25}, journal = {Electrochimica Acta. 54 (2009), H. 25}, isbn = {0013-4686}, pages = {5981 -- 5985}, year = {2009}, language = {en} } @article{ChristiaensAbouzarPoghossianetal.2007, author = {Christiaens, P. and Abouzar, Maryam H. and Poghossian, Arshak and Wagner, Torsten and Bijnens, N. and Williams, O. A. and Daenen, M. and Haenen, K. and Sch{\"o}ning, Michael Josef and Wagner, P.}, title = {Nanocrystalline diamond-based field-effect capacitive pH sensor}, series = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, journal = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, publisher = {IEEE}, address = {Piscataway}, isbn = {1-4244-0841-5}, pages = {1891 -- 1894}, year = {2007}, language = {en} } @article{PoghossianAbouzarChristiaensetal.2007, author = {Poghossian, Arshak and Abouzar, Maryam H. and Christiaens, P. and Williams, O. A. and Haenen, K. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Nanocrystalline diamond-based field-effect (bio-)chemical sensor}, series = {8. Dresdner Sensor-Symposium : Sensoren f{\"u}r Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme f{\"u}r die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung f{\"u}r die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.)}, journal = {8. Dresdner Sensor-Symposium : Sensoren f{\"u}r Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme f{\"u}r die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung f{\"u}r die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.)}, publisher = {TUDpress, Verl. der Wissenschaften}, address = {Dresden}, isbn = {978-3-940046-45-1}, pages = {191 -- 194}, year = {2007}, language = {en} }