@article{SeifarthSchehlLinderetal.2011, author = {Seifarth, Volker and Schehl, D. and Linder, Peter and Gossmann, Matthias and Digel, Ilya and Artmann, Gerhard and Porst, Dariusz and Preiß, C. and Kayser, Peter and Pack, O. and Temiz Artmann, Ayseg{\"u}l}, title = {Ureplace: development of a bioreactor for in vitro culturing of cell seeded tubular vessels on collagen scaffolds}, year = {2011}, abstract = {The demand of replacements for inoperable organs exceeds the amount of available organ transplants. Therefore, tissue engineering developed as a multidisciplinary field of research for autologous in-vitro organs. Such three dimensional tissue constructs request the application of a bioreactor. The UREPLACE bioreactor is used to grow cells on tubular collagen scaffolds OPTIMAIX Sponge 1 with a maximal length of 7 cm, in order to culture in vitro an adequate ureter replacement. With a rotating unit, (urothelial) cells can be placed homogeneously on the inner scaffold surface. Furthermore, a stimulation is combined with this bioreactor resulting in an orientation of muscle cells. These culturing methods request a precise control of several parameters and actuators. A combination of a LabBox and the suitable software LabVision is used to set and conduct parameters like rotation angles, velocities, pressures and other important cell culture values. The bioreactor was tested waterproof successfully. Furthermore, the temperature controlling was adjusted to 37 °C and the CO2 - concentration regulated to 5 \%. Additionally, the pH step responses of several substances showed a perfect functioning of the designed flow chamber. All used software was tested and remained stable for several days.}, subject = {Tissue Engineering}, language = {en} } @article{ZerlinKasischkeDigeletal.2007, author = {Zerlin, Kay and Kasischke, Nicole and Digel, Ilya and Maggakis-Kelemen, Christina and Temiz Artmann, Ayseg{\"u}l and Porst, Dariusz and Kayser, Peter and Linder, Peter and Artmann, Gerhard}, title = {Structural transition temperature of hemoglobins correlates with species' body temperature}, series = {European Biophysics Journal. 37 (2007), H. 1}, journal = {European Biophysics Journal. 37 (2007), H. 1}, isbn = {1432-1017}, pages = {1 -- 10}, year = {2007}, language = {en} } @article{KurulganDemirciDemirciLinderetal.2012, author = {Kurulgan Demirci, Eylem and Demirci, Taylan and Linder, Peter and Trzewik, J{\"u}rgen and Gierkowski, Jessica Ricarda and Gossmann, Matthias and Kayser, Peter and Porst, Dariusz and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {rhAPC reduces the endothelial cell permeability via a decrease of contractile tensions induced by endothelial cells}, series = {Journal of Bioscience and Bioengineering}, volume = {113}, journal = {Journal of Bioscience and Bioengineering}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1347-4421}, doi = {10.1016/j.jbiosc.2012.03.019}, pages = {212 -- 219}, year = {2012}, abstract = {All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models.}, language = {en} } @inproceedings{KurulganDemirciLinderDemircietal.2010, author = {Kurulgan Demirci, Eylem and Linder, Peter and Demirci, Taylan and Gierkowski, Jessica R. and Digel, Ilya and Gossmann, Matthias and Temiz Artmann, Ayseg{\"u}l}, title = {rhAPC reduces the endothelial cell permeability via a decrease of cellular mechanical contractile tensions : [abstract]}, year = {2010}, abstract = {In this study, the CellDrum technology quanitfying cellular mechanical tension on a pico-scale was used to investigate the effect of LPS (lipopolysaccharide) on HAoEC (Human Aortic Endothelial Cell) tension.}, subject = {Endothelzelle}, language = {en} } @techreport{StoelzleFeixThomasEngelstaedteretal.2021, author = {St{\"o}lzle-Feix, Sonja and Thomas, Ulrich and Engelst{\"a}dter, Max and Goßmann, Matthias and Linder, Peter and Staat, Manfred and Raman, Aravind Hariharan and Jung, Alexander and Fertig, Niels}, title = {Plattformtechnologie f{\"u}r kardiale Sicherheitspharmakologie basierend auf teilsynthetischem Herzmuskelgewebe (FLEXcyte) : gemeinsamer FuE-Abschlussbericht aller Partner des Verbundprojektes : Projektlaufzeit: 01.10.2018 bis 30.09.2020}, publisher = {Nanion Technologies GmbH}, address = {M{\"u}nchen}, doi = {10.2314/KXP:1813208581}, pages = {IV, 85 Seiten, 2 ungez{\"a}hlte Seiten}, year = {2021}, language = {de} } @article{SadykovDigelTemizArtmannetal.2009, author = {Sadykov, Rustam and Digel, Ilya and Temiz Artmann, Ayseg{\"u}l and Porst, Dariusz and Linder, Peter and Kayser, Peter and Artmann, Gerhard and Savitskaya, Irina and Zhubanova, Azhar}, title = {Oral lead exposure induces dysbacteriosis in rats}, series = {Journal of Occupational Health. 51 (2009) (2009), H. 1}, journal = {Journal of Occupational Health. 51 (2009) (2009), H. 1}, isbn = {1348-9585}, pages = {64 -- 73}, year = {2009}, language = {en} } @article{MiciliValterOflazetal.2013, author = {Micili, Serap C. and Valter, Markus and Oflaz, Hakan and Ozogul, Candan and Linder, Peter and F{\"o}ckler, Nicole and Artmann, Gerhard and Digel, Ilya and Temiz Artmann, Ayseg{\"u}l}, title = {Optical coherence tomography : a potential tool to predict premature rupture of fetal membranes}, series = {Proceedings of the Institution of Mechanical Engineers. Part H : Journal of engineering in medicine}, volume = {Vol. 227}, journal = {Proceedings of the Institution of Mechanical Engineers. Part H : Journal of engineering in medicine}, number = {No. 4}, publisher = {Sage}, address = {London}, issn = {0046-2039 (Print) ; 2041-3033 (E-Journal)}, pages = {393 -- 401}, year = {2013}, language = {en} } @article{TemizArtmannLinderKayseretal.2005, author = {Temiz Artmann, Ayseg{\"u}l and Linder, Peter and Kayser, Peter and Digel, Ilya}, title = {NMR in vitro effects on proliferation, apoptosis, and viability of human chondrocytes and osteoblasts}, series = {Methods and findings in Experimental and Clinical Pharmacology. 27 (2005), H. 6}, journal = {Methods and findings in Experimental and Clinical Pharmacology. 27 (2005), H. 6}, isbn = {0379-0355}, pages = {391 -- 394}, year = {2005}, language = {en} } @article{KowalskiLinderZierkeetal.2016, author = {Kowalski, Julia and Linder, Peter and Zierke, S. and Wulfen, B. van and Clemens, J. and Konstantinidis, K. and Ameres, G. and Hoffmann, R. and Mikucki, J. and Tulaczyk, S. and Funke, O. and Blandfort, D. and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecker, S. and Plescher, Engelbert and Sch{\"o}ngarth, Sarah and Dachwald, Bernd and Digel, Ilya and Artmann, Gerhard and Eliseev, D. and Heinen, D. and Scholz, F. and Wiebusch, C. and Macht, S. and Bestmann, U. and Reineking, T. and Zetzsche, C. and Schill, K. and F{\"o}rstner, R. and Niedermeier, H. and Szumski, A. and Eissfeller, B. and Naumann, U. and Helbing, K.}, title = {Navigation technology for exploration of glacier ice with maneuverable melting probes}, series = {Cold Regions Science and Technology}, journal = {Cold Regions Science and Technology}, number = {123}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-232X}, doi = {10.1016/j.coldregions.2015.11.006}, pages = {53 -- 70}, year = {2016}, abstract = {The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept.}, language = {en} } @inproceedings{NiedermeierClemensKowalskietal.2014, author = {Niedermeier, H. and Clemens, J. and Kowalski, Julia and Macht, S. and Heinen, D. and Hoffmann, R. and Linder, Peter}, title = {Navigation system for a research ice probe for antarctic glaciers}, series = {IEEE/ION Position, Location and Navigation Symposium (PLANS) ; 5-8 May 2014, Monterey, Calif.}, booktitle = {IEEE/ION Position, Location and Navigation Symposium (PLANS) ; 5-8 May 2014, Monterey, Calif.}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {Position, Location and Navigation Symposium <2014, Monterey, Calif.>}, isbn = {978-1-4799-3319-8}, pages = {959 -- 975}, year = {2014}, language = {en} } @article{GossmannFrotscherLinderetal.2016, author = {Goßmann, Matthias and Frotscher, Ralf and Linder, Peter and Bayer, Robin and Epple, U. and Staat, Manfred and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {Mechano-pharmacological characterization of cardiomyocytes derived from human induced pluripotent stem cells}, series = {Cellular physiology and biochemistry}, volume = {38}, journal = {Cellular physiology and biochemistry}, number = {3}, publisher = {Karger}, address = {Basel}, issn = {1421-9778 (Online)}, doi = {10.1159/000443124}, pages = {1182 -- 1198}, year = {2016}, abstract = {Background/Aims: Common systems for the quantification of cellular contraction rely on animal-based models, complex experimental setups or indirect approaches. The herein presented CellDrum technology for testing mechanical tension of cellular monolayers and thin tissue constructs has the potential to scale-up mechanical testing towards medium-throughput analyses. Using hiPS-Cardiac Myocytes (hiPS-CMs) it represents a new perspective of drug testing and brings us closer to personalized drug medication. Methods: In the present study, monolayers of self-beating hiPS-CMs were grown on ultra-thin circular silicone membranes and deflect under the weight of the culture medium. Rhythmic contractions of the hiPS-CMs induced variations of the membrane deflection. The recorded contraction-relaxation-cycles were analyzed with respect to their amplitudes, durations, time integrals and frequencies. Besides unstimulated force and tensile stress, we investigated the effects of agonists and antagonists acting on Ca²⁺ channels (S-Bay K8644/verapamil) and Na⁺ channels (veratridine/lidocaine). Results: The measured data and simulations for pharmacologically unstimulated contraction resembled findings in native human heart tissue, while the pharmacological dose-response curves were highly accurate and consistent with reference data. Conclusion: We conclude that the combination of the CellDrum with hiPS-CMs offers a fast, facile and precise system for pharmacological, toxicological studies and offers new preclinical basic research potential.}, language = {en} } @article{ArtmannDigelLinderetal.2008, author = {Artmann, Gerhard and Digel, Ilya and Linder, Peter and Porst, Dariusz}, title = {Mechanism of haemoglobin sensing body temperature}, series = {Tissue Engineering Part A. 14 (2008), H. 5}, journal = {Tissue Engineering Part A. 14 (2008), H. 5}, isbn = {1937-3341}, pages = {754 -- 754}, year = {2008}, language = {en} } @article{DemirciTrzewikLinderetal.2004, author = {Demirci, T. and Trzewik, J. and Linder, Peter and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical Stimulation of 3T3 Fibroblasts Activates Genes: Real Time PCR Products and Suppliers by Comparison}, series = {Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2}, journal = {Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2}, isbn = {0932-4666}, pages = {1046 -- 1047}, year = {2004}, language = {en} } @article{DemirciTrzewikLinderetal.2004, author = {Demirci, T. and Trzewik, J. and Linder, Peter and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical Stimulation of 3T3 Fibroblasts Activates Genes: ITGB5 and p53 Responses as Quantified on the mRNA Level}, series = {Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2}, journal = {Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2}, isbn = {0932-4666}, pages = {1030 -- 1031}, year = {2004}, language = {en} } @inproceedings{DigelLeimenaDachwaldetal.2010, author = {Digel, Ilya and Leimena, W. and Dachwald, Bernd and Linder, Peter and Porst, Dariusz and Kayser, Peter and Funke, O. and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {In-situ biological decontamination of an ice melting probe : [abstract]}, year = {2010}, abstract = {The objective of our study was to investigate the efficacy of different in-situ decontamination protocols in the conditions of thermo-mechanical ice-melting.}, subject = {Sonde}, language = {en} } @article{LinderDigelTemizArtmannetal.2007, author = {Linder, Peter and Digel, Ilya and Temiz Artmann, Ayseg{\"u}l and Kayser, Peter and Porst, Dariusz and Artmann, Gerhard}, title = {High-throughput testing of mechanical forces generated in thin cell and tissue layers}, series = {Tissue Engineering. 13 (2007), H. 7}, journal = {Tissue Engineering. 13 (2007), H. 7}, isbn = {1076-3279}, pages = {1778 -- 1778}, year = {2007}, language = {en} } @article{ArtmannDigelZerlinetal.2009, author = {Artmann, Gerhard and Digel, Ilya and Zerlin, Kay and Maggakis-Kelemen, Christina and Linder, Peter and Porst, Dariusz and Kayser, Peter and Stadler, David and Dikta, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Hemoglobin senses body temperature}, series = {European Biophysics Journal}, volume = {38}, journal = {European Biophysics Journal}, number = {5}, isbn = {0175-7571}, pages = {589 -- 600}, year = {2009}, language = {en} } @article{KurulganDemirciDemirciTrzewiketal.2011, author = {Kurulgan Demirci, Eylem and Demirci, T. and Trzewik, J{\"u}rgen and Linder, Peter and Karakulah, G. and Artmann, Gerhard and Sakizli, M. and Temiz Artmann, Ayseg{\"u}l}, title = {Genome-Wide Gene Expression Analysis of NIH 3T3 Cell Line Under Mechanical Stimulation}, series = {Cellular and molecular bioengineering. 4 (2011), H. 1}, journal = {Cellular and molecular bioengineering. 4 (2011), H. 1}, publisher = {Springer}, address = {Berlin}, isbn = {1865-5025}, pages = {46 -- 55}, year = {2011}, language = {en} } @article{DemirciKurulganDemirciTrzewiketal.2009, author = {Demirci, Taylan and Kurulgan Demirci, Eylem and Trzewik, J{\"u}rgen and Linder, Peter and Digel, Ilya and Artmann, Gerhard and Sakizli, Meral and Temiz Artmann, Ayseg{\"u}l}, title = {Gene expression profile analysis of 3T3/NIH fibroblasts after one hour mechanical stress}, series = {IUBMB Life. 61 (2009), H. 3}, journal = {IUBMB Life. 61 (2009), H. 3}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {1521-6543}, pages = {311 -- 312}, year = {2009}, language = {en} } @inproceedings{DigelDemirciTrzewiketal.2004, author = {Digel, Ilya and Demirci, Taylan and Trzewik, J{\"u}rgen and Linder, Peter and Temiz Artmann, Ayseg{\"u}l}, title = {Fibroblast response to mechanical stress: role of the adhesion substrate : [abstract]}, year = {2004}, abstract = {Mechanical stimulation of the cells resulted in evident changes in the cell morphology, protein composition and gene expression. Microscopically, additional formation of stress fibers accompanied by cell re-arrangements in a monolayer was observed. Also, significant activation of p53 gene was revealed as compared to control. Interestingly, the use of CellTech membrane coating induced cell death after mechanical stress had been applied. Such an effect was not detected when fibronectin had been used as an adhesion substrate.}, subject = {Fibroblast}, language = {en} }