@misc{SiegertMerkelHellmuthetal.2012, author = {Siegert, Petra and Merkel, Marion and Hellmuth, Hendrik and O'Connell, Timothy and Maurer, Karl-Heinz}, title = {Stabilisierte fl{\"u}ssige enzymhaltige Tensidzubereitung (Einsatz einer das hydrolytische Enzym stabilisierende Komponente, die ein Monosaccharidglycerat umfasst) [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 17}, year = {2012}, language = {de} } @misc{SiegertMerkelHellmuthetal.2012, author = {Siegert, Petra and Merkel, Marion and Hellmuth, Hendrik and O'Connell, Timothy and Maurer, Karl-Heinz}, title = {Stabilisierte fl{\"u}ssige enzymhaltige Tensidzubereitung (durch den Einsatz einer das hydrolytische Enzym stabilisierende Komponente, die eine mehrfach substituierte Benzolcarbons{\"a}ure umfasst, die an mindestens zwei Kohlenstoffatomen des Benzolrestes eine Carboxylgruppe aufweist) [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 16}, year = {2012}, language = {de} } @article{FalkenbergBottBongaertsetal.2022, author = {Falkenberg, Fabian and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Phylogenetic survey of the subtilase family and a data-mining-based search for new subtilisins from Bacillaceae}, series = {Frontiers in Microbiology}, volume = {2022}, journal = {Frontiers in Microbiology}, number = {13}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.1017978}, pages = {Artikel 13:1017978}, year = {2022}, abstract = {The subtilase family (S8), a member of the clan SB of serine proteases are ubiquitous in all kingdoms of life and fulfil different physiological functions. Subtilases are divided in several groups and especially subtilisins are of interest as they are used in various industrial sectors. Therefore, we searched for new subtilisin sequences of the family Bacillaceae using a data mining approach. The obtained 1,400 sequences were phylogenetically classified in the context of the subtilase family. This required an updated comprehensive overview of the different groups within this family. To fill this gap, we conducted a phylogenetic survey of the S8 family with characterised holotypes derived from the MEROPS database. The analysis revealed the presence of eight previously uncharacterised groups and 13 subgroups within the S8 family. The sequences that emerged from the data mining with the set filter parameters were mainly assigned to the subtilisin subgroups of true subtilisins, high-alkaline subtilisins, and phylogenetically intermediate subtilisins and represent an excellent source for new subtilisin candidates.}, language = {en} } @article{HaegerJolmesOyenetal.2024, author = {Haeger, Gerrit and Jolmes, Tristan and Oyen, Sven and Jaeger, Karl-Erich and Bongaerts, Johannes and Sch{\"o}rken, Ulrich and Siegert, Petra}, title = {Novel recombinant aminoacylase from Paraburkholderia monticola capable of N-acyl-amino acid synthesis}, series = {Applied Microbiology and Biotechnology}, journal = {Applied Microbiology and Biotechnology}, number = {108}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614}, doi = {10.1007/s00253-023-12868-8}, pages = {14 Seiten}, year = {2024}, abstract = {N-Acyl-amino acids can act as mild biobased surfactants, which are used, e.g., in baby shampoos. However, their chemical synthesis needs acyl chlorides and does not meet sustainability criteria. Thus, the identification of biocatalysts to develop greener synthesis routes is desirable. We describe a novel aminoacylase from Paraburkholderia monticola DSM 100849 (PmAcy) which was identified, cloned, and evaluated for its N-acyl-amino acid synthesis potential. Soluble protein was obtained by expression in lactose autoinduction medium and co-expression of molecular chaperones GroEL/S. Strep-tag affinity purification enriched the enzyme 16-fold and yielded 15 mg pure enzyme from 100 mL of culture. Biochemical characterization revealed that PmAcy possesses beneficial traits for industrial application like high temperature and pH-stability. A heat activation of PmAcy was observed upon incubation at temperatures up to 80 °C. Hydrolytic activity of PmAcy was detected with several N-acyl-amino acids as substrates and exhibited the highest conversion rate of 773 U/mg with N-lauroyl-L-alanine at 75 °C. The enzyme preferred long-chain acyl-amino-acids and displayed hardly any activity with acetyl-amino acids. PmAcy was also capable of N-acyl-amino acid synthesis with good conversion rates. The best synthesis results were obtained with the cationic L-amino acids L-arginine and L-lysine as well as with L-leucine and L-phenylalanine. Exemplarily, L-phenylalanine was acylated with fatty acids of chain lengths from C8 to C18 with conversion rates of up to 75\%. N-lauroyl-L-phenylalanine was purified by precipitation, and the structure of the reaction product was verified by LC-MS and NMR.}, language = {en} } @article{HaegerProbstJaegeretal.2023, author = {Haeger, Gerrit and Probst, Johanna and Jaeger, Karl-Erich and Bongaerts, Johannes and Siegert, Petra}, title = {Novel aminoacylases from Streptomyces griseus DSM 40236 and their recombinant production in Streptomyces lividans}, series = {FEBS Open Bio}, volume = {13}, journal = {FEBS Open Bio}, number = {12}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13723}, pages = {2224 -- 2238}, year = {2023}, abstract = {Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl-amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236ᵀ . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC 3.5.1.14), designated SgAA, and an ε-lysine acylase (EC 3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl-amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl-amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-L-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl-amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine.}, language = {en} } @article{FalkenbergVossBottetal.2023, author = {Falkenberg, Fabian and Voß, Leonie and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {New robust subtilisins from halotolerant and halophilic Bacillaceae}, series = {Applied Microbiology and Biotechnology}, volume = {107}, journal = {Applied Microbiology and Biotechnology}, publisher = {Springer Nature}, address = {Berlin}, issn = {1432-0614}, doi = {10.1007/s00253-023-12553-w}, pages = {3939 -- 3954}, year = {2023}, abstract = {The aim of the present study was the characterisation of three true subtilisins and one phylogenetically intermediate subtilisin from halotolerant and halophilic microorganisms. Considering the currently growing enzyme market for efficient and novel biocatalysts, data mining is a promising source for novel, as yet uncharacterised enzymes, especially from halophilic or halotolerant Bacillaceae, which offer great potential to meet industrial needs. Both halophilic bacteria Pontibacillus marinus DSM 16465ᵀ and Alkalibacillus haloalkaliphilus DSM 5271ᵀ and both halotolerant bacteria Metabacillus indicus DSM 16189 and Litchfieldia alkalitelluris DSM 16976ᵀ served as a source for the four new subtilisins SPPM, SPAH, SPMI and SPLA. The protease genes were cloned and expressed in Bacillus subtilis DB104. Purification to apparent homogeneity was achieved by ethanol precipitation, desalting and ion-exchange chromatography. Enzyme activity could be observed between pH 5.0-12.0 with an optimum for SPPM, SPMI and SPLA around pH 9.0 and for SPAH at pH 10.0. The optimal temperature for SPMI and SPLA was 70 °C and for SPPM and SPAH 55 °C and 50 °C, respectively. All proteases showed high stability towards 5\% (w/v) SDS and were active even at NaCl concentrations of 5 M. The four proteases demonstrate potential for future biotechnological applications.}, language = {en} } @misc{SiegertMussmannO'Connelletal.2010, author = {Siegert, Petra and Mussmann, Nina and O'Connell, Timothy and Maurer, Karl-Heinz}, title = {Neue Proteasen und Mittel enthaltend diese Proteasen [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / WIPO}, address = {M{\"u}nchen / Genf}, pages = {1 -- 30}, year = {2010}, language = {de} } @misc{SiegertBaumstarkKluinetal.2010, author = {Siegert, Petra and Baumstark, Rebecca and Kluin, Cornelia and O'Connell, Timothy and Maurer, Karl-Heinz and Hellmuth, Hendrik}, title = {Neue Proteasen und Mittel enthaltend diese Proteasen [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt}, address = {M{\"u}nchen}, pages = {1 -- 30}, year = {2010}, language = {de} } @misc{SiegertSpitzMaurer2010, author = {Siegert, Petra and Spitz, Astrid and Maurer, Karl-Heinz}, title = {Neue Proteasen und Mittel enthaltend diese Proteasen [Offenlegungsschrift]}, publisher = {Deutsches Patentamt / WIPO}, address = {M{\"u}nchen / Genf}, pages = {1 -- 31}, year = {2010}, language = {de} } @misc{SiegertMerkelKluinetal.2011, author = {Siegert, Petra and Merkel, Marion and Kluin, Cornelia and Maurer, Karl-Heinz and O'Connell, Timothy and Wieland, Susanne and Hellmuth, Hendrik}, title = {Neue Proteasen und diese enthaltende Mittel [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 21}, year = {2011}, language = {de} } @misc{SiegertWielandEngelskirchenetal.2008, author = {Siegert, Petra and Wieland, Susanne and Engelskirchen, Julia and Merkel, Marion and Maurer, Karl-Heinz and Bessler, Cornelius}, title = {Neue Alkalische Protease aus Bacillus gibsonii und Wasch- und Reinigungsmittel enthaltend diese neue Alkalische Protease [Offenlegungsschrift]}, publisher = {Deutsches Patentamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 51}, year = {2008}, language = {de} } @misc{MerkelWeberSiegertetal.2006, author = {Merkel, Marion and Weber, Angrit and Siegert, Petra and Wieland, Susanne and Maurer, Karl-Heinz and Bessler, Cornelius}, title = {Neue Alkalische Protease aus Bacillus gibsonii und Wasch- und Reinigungsmittel enthaltend diese neue Alkalische Protease [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / WIPO}, address = {M{\"u}nchen / Genf}, pages = {1 -- 46}, year = {2006}, language = {de} } @misc{BergBesslerGerlachetal.2009, author = {Berg, Gabriele and Bessler, Cornelius and Gerlach, Jochen and G{\"u}bitz, Georg and Heumann, Sonja and Karl, Wolfgang and Maurer, Karl-Heinz and Remler, Peter and Ribitsch, Doris and Schwab, Helmut and Siegert, Petra and Wieland, Susanne}, title = {Mittel enthaltend Proteasen aus Stenotrophomonas maltophilia [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / USPTO / WIPO}, address = {M{\"u}nchen / Den Hague / Washington / Genf}, pages = {1 -- 47}, year = {2009}, language = {de} } @misc{O'ConnellSiegertMaureretal.2010, author = {O'Connell, Timothy and Siegert, Petra and Maurer, Karl-Heinz and Schiedel, Marc-Steffen and Vockenroth, Inga Kerstin}, title = {Method for improving the cleaning action of a detergent or cleaning agent [Internationale Patentanmeldung]}, publisher = {WIPO}, address = {Genf}, pages = {1 -- 15}, year = {2010}, language = {en} } @misc{BanowskiWadleSiegertetal.2004, author = {Banowski, Bernhard and Wadle, Armin and Siegert, Petra and S{\"a}ttler, Andrea}, title = {Lipase-Inhibitoren in Deodorantien und Antitranspirantien [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt}, address = {M{\"u}nchen / Den Hague}, pages = {1 -- 22}, year = {2004}, language = {de} } @misc{SiegertSchwanebergMartinezMoyaetal.2012, author = {Siegert, Petra and Schwaneberg, Ulrich and Martinez Moya, Ronny and Merkel, Marion and Spitz, Astrid and Wieland, Susanne and Hellmuth, Hendrik and Maurer, Karl-Heinz}, title = {Leistungsverbesserte Proteasevariante [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 29}, year = {2012}, language = {de} } @misc{BesslerEversMaureretal.2009, author = {Bessler, Cornelius and Evers, Stefan and Maurer, Karl-Heinz and Merkel, Marion and Siegert, Petra and Weber, Angrit and Wieland, Susanne}, title = {Leistungsverbesserte Proteasen und Wasch- und Reinigungsmittel enthaltend diese Proteasen [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / WIPO}, address = {M{\"u}nchen / Genf}, pages = {1 -- 41}, year = {2009}, language = {de} } @misc{WielandSiegertSpitzetal.2011, author = {Wieland, Susanne and Siegert, Petra and Spitz, Astrid and Maurer, Karl-Heinz and O'Connell, Timothy and Pr{\"u}ser, Inken and Schiedel, Marc-Steffen and Eiting, Thomas and Sendor-M{\"u}ller, Dorota and Bastigkeit, Thorsten and Benda, Konstantin and M{\"u}ller, Sven}, title = {Lagerstabiles fl{\"u}ssiges Wasch- oder Reinigungsmittel enthaltend Proteasen [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / WIPO}, address = {M{\"u}nchen / Den Hague / Genf}, pages = {1 -- 25}, year = {2011}, language = {de} } @article{MartinezJakobTuetal.2013, author = {Martinez, Ronny and Jakob, Felix and Tu, Ran and Siegert, Petra and Maurer, Karl-Heinz and Schwaneberg, Ulrich}, title = {Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution}, series = {Biotechnology and bioengineering}, volume = {Vol. 110}, journal = {Biotechnology and bioengineering}, number = {Iss. 3}, publisher = {Wiley}, address = {Weinheim}, issn = {1097-0290 (E-Journal); 0006-3592 (Print); 0368-1467 (Print)}, pages = {711 -- 720}, year = {2013}, language = {en} } @article{RibitschHeumannTrotschaetal.2011, author = {Ribitsch, D. and Heumann, S. and Trotscha, E. and Herrero Acero, E. and Greimel, K. and Leber, R. and Birger-Gruenberger, R. and Deller, S. and Eiteljoerg, I. and Remler, P. and Weber, Th. and Siegert, Petra and Maurer, Karl-Heinz and Donelli, I. and Freddi, G. and Schwab, H. and Guebitz, G. M.}, title = {Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis}, series = {Biotechnology progress}, volume = {Vol. 27}, journal = {Biotechnology progress}, number = {Iss. 4}, publisher = {Wiley}, address = {Hoboken}, issn = {1520-6033 (E-Journal); 8756-7938 (Print)}, pages = {951 -- 960}, year = {2011}, language = {en} }