@article{HonarvarfardGamellaPoghossianetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {An enzyme-based reversible Controlled NOT (CNOT) logic gate operating on a semiconductor transducer}, series = {Applied Materials Today}, volume = {9}, journal = {Applied Materials Today}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-9407}, doi = {10.1016/j.apmt.2017.08.003}, pages = {266 -- 270}, year = {2017}, abstract = {An enzyme-based biocatalytic system mimicking operation of a logically reversible Controlled NOT (CNOT) gate has been interfaced with semiconductor electronic transducers. Electrolyte-insulator-semiconductor (EIS) structures have been used to transduce chemical changes produced by the enzyme system to an electronically readable capacitive output signal using field-effect features of the EIS device. Two enzymes, urease and esterase, were immobilized on the insulating interface of EIS structure producing local pH changes performing XOR logic operation controlled by various combinations of the input signals represented by urea and ethyl butyrate. Another EIS transducer was functionalized with esterase only, thus performing Identity (ID) logic operation for the ethyl butyrate input. Both semiconductor devices assembled in parallel operated as a logically reversible CNOT gate. The present system, despite its simplicity, demonstrated for the first time logically reversible function of the enzyme system transduced electronically with the semiconductor devices. The biomolecular realization of a CNOT gate interfaced with semiconductors is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.}, language = {en} } @article{MoseleyHalamekKrameretal.2014, author = {Moseley, Fiona and Halamek, Jan and Kramer, Friederike and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {An enzyme-based reversible CNOT logic gate realized in a flow system}, series = {Analyst}, volume = {139}, journal = {Analyst}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-5528 (E-Journal) ; 0003-2654 (Print)}, doi = {10.1039/C4AN00133H}, pages = {1839 -- 1842}, year = {2014}, abstract = {An enzyme system organized in a flow device was used to mimic a reversible Controlled NOT (CNOT) gate with two input and two output signals. Reversible conversion of NAD⁺ and NADH cofactors was used to perform a XOR logic operation, while biocatalytic hydrolysis of p-nitrophenyl phosphate resulted in an Identity operation working in parallel. The first biomolecular realization of a CNOT gate is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.}, language = {en} } @article{VahidpourAlghazaliAkcaetal.2022, author = {Vahidpour, Farnoosh and Alghazali, Yousef and Akca, Sevilay and Hommes, Gregor and Sch{\"o}ning, Michael Josef}, title = {An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H₂O₂ Vapor/Aerosol}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060202}, pages = {Arikel 202}, year = {2022}, abstract = {This work introduces a novel method for the detection of H₂O₂ vapor/aerosol of low concentrations, which is mainly applied in the sterilization of equipment in medical industry. Interdigitated electrode (IDE) structures have been fabricated by means of microfabrication techniques. A differential setup of IDEs was prepared, containing an active sensor element (active IDE) and a passive sensor element (passive IDE), where the former was immobilized with an enzymatic membrane of horseradish peroxidase that is selective towards H₂O₂. Changes in the IDEs' capacitance values (active sensor element versus passive sensor element) under H₂O₂ vapor/aerosol atmosphere proved the detection in the concentration range up to 630 ppm with a fast response time (<60 s). The influence of relative humidity was also tested with regard to the sensor signal, showing no cross-sensitivity. The repeatability assessment of the IDE biosensors confirmed their stable capacitive signal in eight subsequent cycles of exposure to H₂O₂ vapor/aerosol. Room-temperature detection of H₂O₂ vapor/aerosol with such miniaturized biosensors will allow a future three-dimensional, flexible mapping of aseptic chambers and help to evaluate sterilization assurance in medical industry.}, language = {en} } @article{SpiessWilfriedAlvarezetal.2011, author = {Spiess, Elmar and Wilfried, Reichardt and Alvarez, Gerardo and Gottrup, Marcus and {\"O}hlschl{\"a}ger, Peter}, title = {An Artificial PAP Gene Breaks Self-tolerance and Promotes Tumor Regression in the TRAMP Model for Prostate Carcinoma}, series = {Molecular Therapy}, volume = {20}, journal = {Molecular Therapy}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1525-0016}, pages = {555 -- 564}, year = {2011}, language = {en} } @article{PoghossianWeldenBuniatyanetal.2021, author = {Poghossian, Arshak and Welden, Rene and Buniatyan, Vahe V. and Sch{\"o}ning, Michael Josef}, title = {An Array of On-Chip Integrated, Individually Addressable Capacitive Field-Effect Sensors with Control Gate: Design and Modelling}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21186161}, pages = {17}, year = {2021}, abstract = {The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed.}, language = {en} } @article{AbouzarPoghossianPedrazaetal.2011, author = {Abouzar, Maryam H. and Poghossian, Arshak and Pedraza, A. M. and Gandhi, D. and Ingebrandt, S. and Moritz, W. and Sch{\"o}ning, Michael Josef}, title = {An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing}, series = {Biosensors and Bioelectronics. 26 (2011), H. 6}, journal = {Biosensors and Bioelectronics. 26 (2011), H. 6}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0956-5663}, pages = {3023 -- 3028}, year = {2011}, language = {en} } @article{SchusserPoghossianBaeckeretal.2015, author = {Schusser, Sebastian and Poghossian, Arshak and B{\"a}cker, Matthias and Krischer, M. and Leinhos, Marcel and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {An application of field-effect sensors for in-situ monitoring of degradation of biopolymers}, series = {Sensors and actuators B: Chemical}, volume = {207, Part B}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.10.058}, pages = {954 -- 959}, year = {2015}, abstract = {The characterization of the degradation kinetics of biodegradable polymers is mandatory with regard to their proper application. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) field-effect sensors have been applied for in-situ monitoring of the pH-dependent degradation kinetics of the commercially available biopolymer poly(d,l-lactic acid) (PDLLA) in buffer solutions from pH 3 to pH 13. PDLLA films of 500 nm thickness were deposited on the surface of an Al-p-Si-SiO2-Ta2O5 structure from a polymer solution by means of spin-coating method. The PMEIS sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. A faster degradation has been observed for PDLLA films exposed to alkaline solutions (pH 9, pH 11 and pH 13).}, language = {en} } @inproceedings{WuPoghossianWerneretal.2013, author = {Wu, Chunsheng and Poghossian, Arshak and Werner, Frederik and Bronder, Thomas and B{\"a}cker, Matthias and Wang, Ping and Sch{\"o}ning, Michael Josef}, title = {An application of a scanning light-addressable potentiometric sensor for label-free DNA detection}, series = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, booktitle = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, organization = {Dresdner Sensor-Symposium <11, 2013>}, isbn = {978-3-9813484-5-3}, pages = {164 -- 168}, year = {2013}, language = {en} } @article{SchoeningJacobsMucketal.2005, author = {Sch{\"o}ning, Michael Josef and Jacobs, M. and Muck, A. and Knobbe, D.-T. and Wang, J. and Chatrathi, M. and Spillmann, S.}, title = {Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamin detection}, series = {Sensors and Actuators B. 108 (2005), H. 1-2}, journal = {Sensors and Actuators B. 108 (2005), H. 1-2}, isbn = {0925-4005}, pages = {688 -- 694}, year = {2005}, language = {en} } @article{SchoeningWangJacobsetal.2004, author = {Sch{\"o}ning, Michael Josef and Wang, J. and Jacobs, M. and Knobbe, D.-T. and Muck, A.}, title = {Amperometric PDMS-glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection}, series = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, journal = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, publisher = {Japan Association of Chemical Sensors}, address = {Fukuoka}, pages = {566 -- 567}, year = {2004}, language = {en} } @inproceedings{MoritzYoshinobuFingeretal.2003, author = {Moritz, Werner and Yoshinobu, Tatsuo and Finger, Friedhelm and Krause, Steffi and Sch{\"o}ning, Michael Josef}, title = {Amorphous silicon as semiconductor material for high resolution LAPS}, series = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, booktitle = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, pages = {48 -- 49}, year = {2003}, language = {en} } @article{YoshinobuEckenPoghossianetal.2001, author = {Yoshinobu, T. and Ecken, H. and Poghossian, Arshak and L{\"u}th, H. and Iwasaki, H. and Sch{\"o}ning, Michael Josef}, title = {Alternative sensor materials for light-addressable potentiometric sensors}, series = {Sensors and Actuators B. 76 (2001), H. 1-3}, journal = {Sensors and Actuators B. 76 (2001), H. 1-3}, isbn = {0925-4005}, pages = {388 -- 392}, year = {2001}, language = {en} } @techreport{SiegertBongaertsWagneretal.2022, author = {Siegert, Petra and Bongaerts, Johannes and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten}, title = {Abschlussbericht zum Projekt zur {\"U}berwachung biotechnologischer Prozesse mittels Diacetyl-/Acetoin-Biosensor und Evaluierung von Acetoin-Reduktasen zur Verwendung in Biotransformationen}, address = {Aachen}, organization = {FH Aachen}, pages = {16 Seiten}, year = {2022}, language = {de} } @techreport{HaegerBongaertsSiegert2023, author = {Haeger, Gerrit and Bongaerts, Johannes and Siegert, Petra}, title = {Abschlussbericht Teil II: Eingehende Darstellung Neue biobasierte Lipopeptide aus nachhaltiger Produktion (LipoPep)}, pages = {17Seiten}, year = {2023}, language = {de} } @article{SchoeningKloock2007, author = {Sch{\"o}ning, Michael Josef and Kloock, Joachim P.}, title = {About 20 years of silicon-based thin-film sensors with chalcogenide glass materials for heavy metal analysis: Technological aspects of fabrication and miniaturization}, series = {Electroanalysis. 19 (2007), H. 19-20}, journal = {Electroanalysis. 19 (2007), H. 19-20}, isbn = {1040-0397}, pages = {2029 -- 2038}, year = {2007}, language = {en} } @article{SimonisKringsLuethetal.2001, author = {Simonis, A. and Krings, T. and L{\"u}th, H. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {A „hybrid" thin-film pH sensor with integrated thick-film reference}, series = {Sensors. 1 (2001), H. 6}, journal = {Sensors. 1 (2001), H. 6}, isbn = {1424-8220}, pages = {183 -- 192}, year = {2001}, language = {en} } @article{StockMalindretosIndlekoferetal.2001, author = {Stock, J. and Malindretos, J. and Indlekofer, K.M. and P{\"o}ttgens, Michael and F{\"o}rster, Arnold and L{\"u}th, Hans}, title = {A Vertical Resonant Tunneling Transistor for Application in Digital Logic Circuits}, series = {IEEE Transactions on Electron Devices (T-ED). 48 (2001), H. 6}, journal = {IEEE Transactions on Electron Devices (T-ED). 48 (2001), H. 6}, isbn = {0018-9383}, pages = {1028 -- 1032}, year = {2001}, language = {en} } @article{BaeckerPouyeshmanSchnitzleretal.2011, author = {B{\"a}cker, Matthias and Pouyeshman, S. and Schnitzler, Thomas and Poghossian, Arshak and Wagner, Patrick and Biselli, Manfred and Sch{\"o}ning, Michael Josef}, title = {A silicon-based multi-sensor chip for monitoring of fermentation processes}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1364 -- 1369}, year = {2011}, language = {en} } @article{SchoeningBussFassbenderetal.2000, author = {Sch{\"o}ning, Michael Josef and Buß, G. and Faßbender, F. and Gl{\"u}ck, O. and Schmitt, G. and Schultze, J. W. and L{\"u}th, H.}, title = {A silicon-based microelectrode array for chemical analysis}, series = {Sensors and Actuators B. 65 (2000), H. 1-3}, journal = {Sensors and Actuators B. 65 (2000), H. 1-3}, isbn = {0925-4005}, pages = {284 -- 287}, year = {2000}, language = {en} } @inproceedings{SchoeningAbouzarWagneretal.2006, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Wagner, Torsten and N{\"a}ther, Niko and Rolka, David and Yoshinobu, Tatsuo and Kloock, Joachim P. and Turek, Monika and Ingebrandt, Sven and Poghossian, Arshak}, title = {A semiconductor-based field-effect platform for (bio-)chemical and physical sensors: From capacitive EIS sensors and LAPS over ISFETs to nano-scale devices}, series = {MRS Proceedings}, booktitle = {MRS Proceedings}, doi = {10.1557/PROC-0952-F08-02}, pages = {1 -- 9}, year = {2006}, language = {en} }