@inproceedings{MichelRosinButenwegetal.2020, author = {Michel, Philipp and Rosin, Julia and Butenweg, Christoph and Klinkel, Sven}, title = {Soil-dependent earthquake spectra in the analysis of liquid-storage-tanks on compliant soil}, series = {Seismic design of industrial facilities 2020}, booktitle = {Seismic design of industrial facilities 2020}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-86359-729-0}, pages = {245 -- 254}, year = {2020}, abstract = {A further development of the Added-Mass-Method allows the combined representation of the effects of both soil-structure-interaction and fluid-structure interaction on a liquid-filled-tank in one model. This results in a practical method for describing the dynamic fluid pressure on the tank shell during joint movement. The fluid pressure is calculated on the basis of the tank's eigenform and the earthquake acceleration and represented by additional masses on the shell. The bearing on compliant ground is represented by replacement springs, which are calculated dependent on the local soil composition. The influence of the shear modulus of the compliant soil is clearly visible in the pressure curves and the stress distribution in the shell. The acceleration spectra are also dependent on soil stiffness. According to Eurocode-8 the acceleration spectra are determined for fixed soil-classes, instead of calculating the accelerations for each site in direct dependence on the soil composition. This leads to unrealistic sudden changes in the system's response. Therefore, earthquake spectra are calculated for different soil models in direct dependence of the shear modulus. Thus, both the acceleration spectra and the replacement springs match the soil composition. This enables a reasonable and consistent calculation of the system response for the actual conditions at each site.}, language = {en} } @inproceedings{MarkinkovicButenwegPaveseetal.2020, author = {Markinkovic, Marko and Butenweg, Christoph and Pavese, A. and Lanese, I. and Hoffmeister, B. and Pinkawa, M. and Vulcu, C. and Bursi, O. and Nardin, C. and Paolacci, F. and Quinci, G. and Fragiadakis, M. and Weber, F. and Huber, P. and Renault, P. and G{\"u}ndel, M. and Dyke, S. and Ciucci, M. and Marino, A.}, title = {Investigation of the seismic behaviour of structural and nonstructural components in industrial facilities by means of shaking table tests}, series = {Seismic design of industrial facilities 2020}, booktitle = {Seismic design of industrial facilities 2020}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-86359-729-0}, pages = {159 -- 172}, year = {2020}, language = {en} } @inproceedings{CacciatoreButenweg2020, author = {Cacciatore, Pamela and Butenweg, Christoph}, title = {Seismic safety of cylindrical granular material steel silos under seismic loading}, series = {Seismic design of industrial facilities 2020}, booktitle = {Seismic design of industrial facilities 2020}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-86359-729-0}, pages = {231 -- 244}, year = {2020}, language = {en} } @inproceedings{TomićPennaDeJongetal.2020, author = {Tomić, Igor and Penna, Andrea and DeJong, Matthew and Butenweg, Christoph and Correia, Ant{\´o}nio A. and Candeias, Paulo X. and Senaldi, Ilaria and Guerrini, Gabriele and Malomo, Daniele and Beyer, Katrin}, title = {Seismic testing of adjacent interacting masonry structures}, series = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, booktitle = {12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020)}, doi = {10.23967/sahc.2021.234}, pages = {1 -- 12}, year = {2020}, abstract = {In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the fa{\c{c}}ades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the fa{\c{c}}ade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25\%, 50\%, 75\% and 100\% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa}, language = {en} } @inproceedings{KaschSchmidtEichleretal.2020, author = {Kasch, Susanne and Schmidt, Thomas and Eichler, Fabian and Thurn, Laura and Jahn, Simon and Bremen, Sebastian}, title = {Solution approaches and process concepts for powder bed-based melting of glass}, series = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, booktitle = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-54333-4 (Print)}, doi = {10.1007/978-3-030-54334-1_7}, pages = {82 -- 95}, year = {2020}, abstract = {In the study, the process chain of additive manufacturing by means of powder bed fusion will be presented based on the material glass. In order to reliably process components additively, new concepts with different solutions were developed and investigated. Compared to established metallic materials, the properties of glass materials differ significantly. Therefore, the process control was adapted to the material glass in the investigations. With extensive parameter studies based on various glass powders such as borosilicate glass and quartz glass, scientifically proven results on powder bed fusion of glass are presented. Based on the determination of the particle properties with different methods, extensive investigations are made regarding the melting behavior of glass by means of laser beams. Furthermore, the experimental setup was steadily expanded. In addition to the integration of coaxial temperature measurement and regulation, preheating of the building platform is of major importance. This offers the possibility to perform 3D printing at the transformation temperatures of the glass materials. To improve the component's properties, the influence of a subsequent heat treatment was also investigated. The experience gained was incorporated into a new experimental system, which allows a much better exploration of the 3D printing of glass. Currently, studies are being conducted to improve surface texture, building accuracy, and geometrical capabilities using three-dimensional specimen. The contribution shows the development of research in the field of 3D printing of glass, gives an insight into the machine and process engineering as well as an outlook on the possibilities and applications.}, language = {en} } @inproceedings{ElgamalHeuermann2020, author = {Elgamal, Abdelrahman and Heuermann, Holger}, title = {Design and Development of a Hot S-Parameter Measurement System for Plasma and Magnetron Applications}, series = {Proceedings of the 2020 German Microwave Conference}, booktitle = {Proceedings of the 2020 German Microwave Conference}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-3-9820397-1-8}, pages = {124 -- 127}, year = {2020}, abstract = {This paper presents the design, development and calibration procedures of a novel hot S-parameter measurement system for plasma and magnetron applications with power level up to 6 kW. Based on a vector network analyzer, a power amplifier and two directional couplers, the input matching hotS 11 and transmission hotS 21 of the device under test are measured at 2.45 GHz center frequency and 300MHz bandwidth, while the device is driven by the magnetron. This measurement system opens a new horizon to develop many new industrial applications such as microwave plasma jets, dryer systems, dryers and so forth. Furthermore, the developing, controlling and monitoring a 2kW 2.45GHz plasma jet and a dryer system using the measurement system are presented and explained.}, language = {en} } @inproceedings{FingerdeVriesVosetal.2020, author = {Finger, Felix and de Vries, Reynard and Vos, Roelof and Braun, Carsten and Bil, Cees}, title = {A comparison of hybrid-electric aircraft sizing methods}, series = {AIAA Scitech 2020 Forum}, booktitle = {AIAA Scitech 2020 Forum}, doi = {10.2514/6.2020-1006}, pages = {31 Seiten}, year = {2020}, abstract = {The number of case studies focusing on hybrid-electric aircraft is steadily increasing, since these configurations are thought to lead to lower operating costs and environmental impact than traditional aircraft. However, due to the lack of reference data of actual hybrid-electric aircraft, in most cases, the design tools and results are difficult to validate. In this paper, two independently developed approaches for hybrid-electric conceptual aircraft design are compared. An existing 19-seat commuter aircraft is selected as the conventional baseline, and both design tools are used to size that aircraft. The aircraft is then re-sized under consideration of hybrid-electric propulsion technology. This is performed for parallel, serial, and fully-electric powertrain architectures. Finally, sensitivity studies are conducted to assess the validity of the basic assumptions and approaches regarding the design of hybrid-electric aircraft. Both methods are found to predict the maximum take-off mass (MTOM) of the reference aircraft with less than 4\% error. The MTOM and payload-range energy efficiency of various (hybrid-) electric configurations are predicted with a maximum difference of approximately 2\% and 5\%, respectively. The results of this study confirm a correct formulation and implementation of the two design methods, and the data obtained can be used by researchers to benchmark and validate their design tools.}, language = {en} } @inproceedings{RekePeterSchulteTiggesetal.2020, author = {Reke, Michael and Peter, Daniel and Schulte-Tigges, Joschua and Schiffer, Stefan and Ferrein, Alexander and Walter, Thomas and Matheis, Dominik}, title = {A Self-Driving Car Architecture in ROS2}, series = {2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa}, booktitle = {2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-7281-4162-6}, doi = {10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020}, pages = {1 -- 6}, year = {2020}, abstract = {In this paper we report on an architecture for a self-driving car that is based on ROS2. Self-driving cars have to take decisions based on their sensory input in real-time, providing high reliability with a strong demand in functional safety. In principle, self-driving cars are robots. However, typical robot software, in general, and the previous version of the Robot Operating System (ROS), in particular, does not always meet these requirements. With the successor ROS2 the situation has changed and it might be considered as a solution for automated and autonomous driving. Existing robotic software based on ROS was not ready for safety critical applications like self-driving cars. We propose an architecture for using ROS2 for a self-driving car that enables safe and reliable real-time behaviour, but keeping the advantages of ROS such as a distributed architecture and standardised message types. First experiments with an automated real passenger car at lower and higher speed-levels show that our approach seems feasible for autonomous driving under the necessary real-time conditions.}, language = {en} } @inproceedings{OetringerDuemmlerGoettsche2020, author = {Oetringer, Kerstin and D{\"u}mmler, Andreas and G{\"o}ttsche, Joachim}, title = {Neues Modell zur 1D-Simulation der indirekten Verdunstungsk{\"u}hlung}, series = {DKV-Tagung 2020, AA II.1}, booktitle = {DKV-Tagung 2020, AA II.1}, pages = {250 -- 262}, year = {2020}, abstract = {Im Projekt Coolplan- AIR geht es um die Fortentwicklung und Feld- Validierung eines Berechnungs- und Auslegungstools zur energieeffizienten K{\"u}hlung von Geb{\"a}uden mit luftgest{\"u}tzten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Eine der betrachteten Anlagen arbeitet mit indirekter Verdunstung. Diese Ver{\"o}ffentlichung zeigt den Entwicklungsprozess und den Aufbau des Simulationsmodells zur Verdunstungsk{\"u}hlung in der Simulationsumgebung Matlab- Simulink mit der CARNOT- Toolbox. Das besondere Augenmerk liegt dabei auf dem physikalischen Modell des W{\"a}rme{\"u}bertragers, in dem die Verdunstung implementiert ist. Dem neuen Modellansatz liegt die Annahme einer aus der Enthalpie- Betrachtung hergeleiteten effektiven W{\"a}rmekapazit{\"a}t zugrunde. Des Weiteren wird der Befeuchtungsgrad als konstant angesehen und eine standardisierte Zunahme der W{\"a}rme{\"u}bertragung des feuchten gegen{\"u}ber dem trockenen W{\"a}rme{\"u}bertrager angenommen. Die Validierung des Modells erfolgte anhand von Literaturdaten. F{\"u}r den trockenen W{\"a}rmetauscher ist der maximale absolute Fehler der berechneten Austrittstemperatur (Zuluft) kleiner als ±0.1 K und f{\"u}r den nassen W{\"a}rmetauscher (K{\"u}hlfall) unter der Annahme eines konstanten Verdunstungsgrades kleiner als ±0.4 K.}, language = {de} } @inproceedings{SattlerChicoCaminosUerlingsetal.2020, author = {Sattler, Johannes Christoph and Chico Caminos, Ricardo Alexander and {\"U}rlings, Nicolas and Dutta, Siddharth and Ruiz, Victor and Kalogirou, Soteris and Ktistis, Panayiotis and Agathokleous, Rafaela and Jung, Christian and Alexopoulos, Spiros and Atti, Vikrama Nagababu and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Operational experience and behaviour of a parabolic trough collector system with concrete thermal energy storage for process steam generation in Cyprus}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029278}, pages = {140004-1 -- 140004-10}, year = {2020}, abstract = {As part of the transnational research project EDITOR, a parabolic trough collector system (PTC) with concrete thermal energy storage (C-TES) was installed and commissioned in Limassol, Cyprus. The system is located on the premises of the beverage manufacturer KEAN Soft Drinks Ltd. and its function is to supply process steam for the factory's pasteurisation process [1]. Depending on the factory's seasonally varying capacity for beverage production, the solar system delivers between 5 and 25 \% of the total steam demand. In combination with the C-TES, the solar plant can supply process steam on demand before sunrise or after sunset. Furthermore, the C-TES compensates the PTC during the day in fluctuating weather conditions. The parabolic trough collector as well as the control and oil handling unit is designed and manufactured by Protarget AG, Germany. The C-TES is designed and produced by CADE Soluciones de Ingenier{\´i}a, S.L., Spain. In the focus of this paper is the description of the operational experience with the PTC, C-TES and boiler during the commissioning and operation phase. Additionally, innovative optimisation measures are presented.}, language = {en} } @inproceedings{PaulsenHoffstadtKrafftetal.2020, author = {Paulsen, Svea and Hoffstadt, Kevin and Krafft, Simone and Leite, A. and Zang, J. and Fonseca-Zang, W. and Kuperjans, Isabel}, title = {Continuous biogas production from sugarcane as sole substrate}, series = {Energy Reports}, volume = {6}, booktitle = {Energy Reports}, number = {Supplement 1}, publisher = {Elsevier}, doi = {10.1016/j.egyr.2019.08.035}, pages = {153 -- 158}, year = {2020}, abstract = {A German-Brazilian research project investigates sugarcane as an energy plant in anaerobic digestion for biogas production. The aim of the project is a continuous, efficient, and stable biogas process with sugarcane as the substrate. Tests are carried out in a fermenter with a volume of 10 l. In order to optimize the space-time load to achieve a stable process, a continuous process in laboratory scale has been devised. The daily feed in quantity and the harvest time of the substrate sugarcane has been varied. Analyses of the digester content were conducted twice per week to monitor the process: The ratio of inorganic carbon content to volatile organic acid content (VFA/TAC), the concentration of short-chain fatty acids, the organic dry matter, the pH value, and the total nitrogen, phosphate, and ammonium concentrations were monitored. In addition, the gas quality (the percentages of CO₂, CH₄, and H₂) and the quantity of the produced gas were analyzed. The investigations have exhibited feasible and economical production of biogas in a continuous process with energy cane as substrate. With a daily feeding rate of 1.68gᵥₛ/l*d the average specific gas formation rate was 0.5 m3/kgᵥₛ. The long-term study demonstrates a surprisingly fast metabolism of short-chain fatty acids. This indicates a stable and less susceptible process compared to other substrates.}, language = {en} } @inproceedings{SildatkeKarwanniKraftetal.2020, author = {Sildatke, Michael and Karwanni, Hendrik and Kraft, Bodo and Schmidts, Oliver and Z{\"u}ndorf, Albert}, title = {Automated Software Quality Monitoring in Research Collaboration Projects}, series = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, booktitle = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1145/3387940.3391478}, pages = {603 -- 610}, year = {2020}, abstract = {In collaborative research projects, both researchers and practitioners work together solving business-critical challenges. These projects often deal with ETL processes, in which humans extract information from non-machine-readable documents by hand. AI-based machine learning models can help to solve this problem. Since machine learning approaches are not deterministic, their quality of output may decrease over time. This fact leads to an overall quality loss of the application which embeds machine learning models. Hence, the software qualities in development and production may differ. Machine learning models are black boxes. That makes practitioners skeptical and increases the inhibition threshold for early productive use of research prototypes. Continuous monitoring of software quality in production offers an early response capability on quality loss and encourages the use of machine learning approaches. Furthermore, experts have to ensure that they integrate possible new inputs into the model training as quickly as possible. In this paper, we introduce an architecture pattern with a reference implementation that extends the concept of Metrics Driven Research Collaboration with an automated software quality monitoring in productive use and a possibility to auto-generate new test data coming from processed documents in production. Through automated monitoring of the software quality and auto-generated test data, this approach ensures that the software quality meets and keeps requested thresholds in productive use, even during further continuous deployment and changing input data.}, language = {en} } @inproceedings{TamaldinEschTonolietal.2020, author = {Tamaldin, Noreffendy and Esch, Thomas and Tonoli, Andrea and Reisinger, Karl Heinz and Sprenger, Hanna and Razuli, Hisham}, title = {ERASMUS+ United CBHE Automotive International Collaboration from European to South East Asia}, series = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, booktitle = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, publisher = {IEOM Society International}, address = {Southfield}, isbn = {978-1-7923-6123-4}, issn = {2169-8767}, pages = {2970 -- 2972}, year = {2020}, abstract = {The industrial revolution especially in the IR4.0 era have driven many states of the art technologies to be introduced. The automotive industry as well as many other key industries have also been greatly influenced. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South East Asia (SEA). Indulging this situation, FH JOANNEUM, Austria together with European partners from FH Aachen, Germany and Politecnico di Torino, Italy are taking initiative to close down the gap utilizing the Erasmus+ United Capacity Building in Higher Education grant from EU. A consortium was founded to engage with automotive technology transfer using the European framework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries in respective countries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative and high-quality training courses to increase graduate's employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing University-industry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future.}, language = {en} } @inproceedings{SattlerChicoCaminosAttietal.2020, author = {Sattler, Johannes Christoph and Chico Caminos, Ricardo Alexander and Atti, Vikrama Nagababu and {\"U}rlings, Nicolas and Dutta, Siddharth and Ruiz, Victor and Kalogirou, Soteris and Ktistis, Panayiotis and Agathokleous, Rafaela and Alexopoulos, Spiros and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Dynamic simulation tool for a performance evaluation and sensitivity study of a parabolic trough collector system with concrete thermal energy storage}, series = {AIP Conference Proceedings 2303}, booktitle = {AIP Conference Proceedings 2303}, publisher = {American Institute of Physics}, address = {Melville, NY}, issn = {0094-243X}, doi = {10.1063/5.0029277}, pages = {160004}, year = {2020}, language = {de} } @inproceedings{Laack2020, author = {Laack, Walter van}, title = {Schnittstelle Tod: Aufbruch oder Ende - Kontakte oder Hirngespinste?}, publisher = {van Laack GmbH}, address = {Aachen}, isbn = {978-3-936624-51-9}, pages = {264 Seiten}, year = {2020}, abstract = {Tagungsbeitr{\"a}ge des 6. Europ{\"a}ischen Seminars am 09. November 2019 in Aachen zum Thema Nahtoderfahrungen mit dem Serientitel: "Schnittstelle Tod"}, language = {de} } @inproceedings{EltesterFerreinSchiffer2020, author = {Eltester, Niklas Sebastian and Ferrein, Alexander and Schiffer, Stefan}, title = {A smart factory setup based on the RoboCup logistics league}, series = {2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS)}, booktitle = {2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/ICPS48405.2020.9274766}, pages = {297 -- 302}, year = {2020}, abstract = {In this paper we present SMART-FACTORY, a setup for a research and teaching facility in industrial robotics that is based on the RoboCup Logistics League. It is driven by the need for developing and applying solutions for digital production. Digitization receives constantly increasing attention in many areas, especially in industry. The common theme is to make things smart by using intelligent computer technology. Especially in the last decade there have been many attempts to improve existing processes in factories, for example, in production logistics, also with deploying cyber-physical systems. An initiative that explores challenges and opportunities for robots in such a setting is the RoboCup Logistics League. Since its foundation in 2012 it is an international effort for research and education in an intra-warehouse logistics scenario. During seven years of competition a lot of knowledge and experience regarding autonomous robots was gained. This knowledge and experience shall provide the basis for further research in challenges of future production. The focus of our SMART-FACTORY is to create a stimulating environment for research on logistics robotics, for teaching activities in computer science and electrical engineering programmes as well as for industrial users to study and explore the feasibility of future technologies. Building on a very successful history in the RoboCup Logistics League we aim to provide stakeholders with a dedicated facility oriented at their individual needs.}, language = {en} } @inproceedings{ButenwegMarinkovićPaveseetal.2021, author = {Butenweg, Christoph and Marinković, Marko and Pavese, Alberto and Lanese, Igor and Hoffmeister, Benno and Pinkawa, Marius and Vulcu, Mihai-Cristian and Bursi, Oreste and Nardin, Chiara and Paolacci, Fabrizio and Quinci, Gianluca and Fragiadakis, Michalis and Weber, Felix and Huber, Peter and Renault, Philippe and G{\"u}ndel, Max and Dyke, Shirley and Ciucci, M. and Marino, A.}, title = {Seismic performance of multi-component systems in special risk industrial facilities}, series = {Proceedings of the seventeenth world conference on earthquake engineering}, booktitle = {Proceedings of the seventeenth world conference on earthquake engineering}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results.}, language = {en} } @inproceedings{ButenwegBursiNardinetal.2021, author = {Butenweg, Christoph and Bursi, Oreste S. and Nardin, Chiara and Lanese, Igor and Pavese, Alberto and Marinković, Marko and Paolacci, Fabrizio and Quinci, Gianluca}, title = {Experimental investigation on the seismic performance of a multi-component system for major-hazard industrial facilities}, series = {Conference Proceedings: Pressure Vessels \& Piping Conference Vol.5}, booktitle = {Conference Proceedings: Pressure Vessels \& Piping Conference Vol.5}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, isbn = {9780791885352}, doi = {10.1115/PVP2021-61696}, pages = {8 Seiten}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed.}, language = {en} } @inproceedings{FunkeBeckmannKeinzetal.2021, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Horikawa, Atsushi}, title = {30 years of dry low NOx micromix combustor research for hydrogen-rich fuels: an overview of past and present activities}, series = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 4B: Combustion, Fuels, and Emissions}, booktitle = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 4B: Combustion, Fuels, and Emissions}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-8413-3}, doi = {10.1115/GT2020-16328}, pages = {14 Seiten}, year = {2021}, abstract = {The paper presents an overview of the past and present of low-emission combustor research with hydrogen-rich fuels at Aachen University of Applied Sciences. In 1990, AcUAS started developing the Dry-Low-NOx Micromix combustion technology. Micromix reduces NOx emissions using jet-in-crossflow mixing of multiple miniaturized fuel jets and combustor air with an inherent safety against flashback. At first, pure hydrogen as fuel was investigated with lab-scale applications. Later, Micromix prototypes were developed for the use in an industrial gas turbine Honeywell/Garrett GTCP-36-300, proving low NOx characteristics during real gas turbine operation, accompanied by the successful definition of safety laws and control system modifications. Further, the Micromix was optimized for the use in annular and can combustors as well as for fuel-flexibility with hydrogen-methane-mixtures and hydrogen-rich syngas qualities by means of extensive experimental and numerical simulations. In 2020, the latest Micromix application will be demonstrated in a commercial 2 MW-class gas turbine can-combustor with full-scale engine operation. The paper discusses the advances in Micromix research over the last three decades.}, language = {en} } @inproceedings{MilijašŠakićMarinkovićetal.2021, author = {Milijaš, Aleksa and Šakić, Bogdan and Marinković, Marko and Butenweg, Christoph}, title = {Experimental investigation of behaviour of masonry infilled RC frames under out-of-plane loading}, series = {Proceedings of COMPDYN 2021}, booktitle = {Proceedings of COMPDYN 2021}, editor = {Papadrakakis, Manolis and Fragiadakis, Michalis}, publisher = {National Technical University of Athens}, address = {Athen}, isbn = {978-618-85072-5-8}, issn = {2623-3347}, doi = {10.7712/120121.8528.18914}, pages = {829 -- 846}, year = {2021}, abstract = {Masonry infills are commonly used as exterior or interior walls in reinforced concrete (RC) frame structures and they can be encountered all over the world, including earthquake prone regions. Since the middle of the 20th century the behaviour of these non-structural elements under seismic loading has been studied in numerous experimental campaigns. However, most of the studies were carried out by means of in-plane tests, while there is a lack of out-of-plane experimental investigations. In this paper, the out-of-plane tests carried out on full scale masonry infilled frames are described. The results of the out-of-plane tests are presented in terms of force-displacement curves and measured out-of-plane displacements. Finally, the reliability of existing analytical approaches developed to estimate the out-of-plane strength of masonry infills is examined on presented experimental results.}, language = {en} }