@article{MaasVosLagemaatetal.2014, author = {Maas, Marnix C. and Vos, Eline K. and Lagemaat, Miriam W. and Bitz, Andreas and Orzada, Stephan and Kobus, Thiele and Kraff, Oliver and Maderwald, Stefan and Ladd, Mark E. and Scheenen, Tom W. J.}, title = {Feasibility of T₂-weighted turbo spin echo imaging of the human prostate at 7 tesla}, series = {Magnetic Resonance in Medicine}, volume = {71}, journal = {Magnetic Resonance in Medicine}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.24818}, pages = {1711 -- 1719}, year = {2014}, abstract = {Purpose To demonstrate that high quality T₂-weighted (T2w) turbo spin-echo (TSE) imaging of the complete prostate can be achieved routinely and within safety limits at 7 T, using an external transceive body array coil only. Methods Nine healthy volunteers and 12 prostate cancer patients were scanned on a 7 T whole-body system. Preparation consisted of B₀ and radiofrequency shimming and localized flip angle calibration. T₁ and T₂ relaxation times were measured and used to define the T2w-TSE protocol. T2w imaging was performed using a TSE sequence (pulse repetition time/echo time 3000-3640/71 ms) with prolonged excitation and refocusing pulses to reduce specific absorption rate. Results High quality T2w TSE imaging was performed in less than 2 min in all subjects. Tumors of patients with gold-standard tumor localization (MR-guided biopsy or prostatectomy) were well visualized on 7 T imaging (n = 3). The number of consecutive slices achievable within a 10-g averaged specific absorption rate limit of 10 W/kg was ≥28 in all subjects, sufficient for full prostate coverage with 3-mm slices in at least one direction. Conclusion High quality T2w TSE prostate imaging can be performed routinely and within specific absorption rate limits at 7 T with an external transceive body array.}, language = {en} } @article{HoltrupSadeghfamHeuermannetal.2014, author = {Holtrup, S. and Sadeghfam, Arash and Heuermann, Holger and Awakowicz, P.}, title = {Characterization and optimization technique for microwave-driven high-intensity discharge lamps using hot S-parameters}, series = {IEEE transactions on microwave theories and techniques}, volume = {62}, journal = {IEEE transactions on microwave theories and techniques}, number = {10}, publisher = {IEEE}, address = {New York}, issn = {0018-9480}, doi = {10.1109/TMTT.2014.2342652}, pages = {2471 -- 2480}, year = {2014}, abstract = {High-intensity discharge lamps can be driven by radio-frequency signals in the ISM frequency band at 2.45 GHz, using a matching network to transform the impedance of the plasma to the source impedance. To achieve an optimal operating condition, a good characterization of the lamp in terms of radio frequency equivalent circuits under operating conditions is necessary, enabling the design of an efficient matching network. This paper presents the characterization technique for such lamps and presents the design of the required matching network. For the characterization, a high-intensity discharge lamp was driven by a monofrequent large signal at 2.45 GHz, whereas a frequency sweep over 300 MHz was performed across this signal to measure so-called small-signal hot S-parameters using a vector network analyzer. These parameters are then used as an equivalent load in a circuit simulator to design an appropriate matching network. Using the measured data as a black-box model in the simulation results in a quick and efficient method to simulate and design efficient matching networks in spite of the complex plasma behavior. Furthermore, photometric analysis of high-intensity discharge lamps are carried out, comparing microwave operation to conventional operation.}, language = {en} } @article{BeckBuchleitnerFerreinetal.2014, author = {Beck, Daniel and Buchleitner, Martin and Ferrein, Alexander and Niem{\"u}ller, Tim and Steinbauer, Gerald}, title = {Mostly Harmless \& AllemaniACs - mixed innovations}, pages = {1 -- 8}, year = {2014}, language = {en} } @article{SchifferFerreinLakemeyer2015, author = {Schiffer, Stefan and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Abstracting Away Low-Level Details in Service Robotics with Fuzzy Fluents}, series = {Model-Driven Knowledge Engineering for Improved Software Modularity in Robotics and Automation. Workshop at European Robotics Forum 2015 Vienna, Austria, March 11-13, 2015.}, journal = {Model-Driven Knowledge Engineering for Improved Software Modularity in Robotics and Automation. Workshop at European Robotics Forum 2015 Vienna, Austria, March 11-13, 2015.}, pages = {1 -- 4}, year = {2015}, language = {en} } @article{PoettgenEdererAltherretal.2015, author = {P{\"o}ttgen, Philipp and Ederer, Thorsten and Altherr, Lena and Lorenz, Ulf and Pelz, Peter F.}, title = {Examination and optimization of a heating circuit for energy-efficient buildings}, series = {Energy Technology}, volume = {4}, journal = {Energy Technology}, number = {1}, publisher = {WILEY-VCH Verlag}, address = {Weinheim}, isbn = {2194-4296}, doi = {10.1002/ente.201500252}, pages = {136 -- 144}, year = {2015}, abstract = {The conference center darmstadtium in Darmstadt is a prominent example of energy efficient buildings. Its heating system consists of different source and consumer circuits connected by a Zortstr{\"o}m reservoir. Our goal was to reduce the energy costs of the system as much as possible. Therefore, we analyzed its supply circuits. The first step towards optimization is a complete examination of the system: 1) Compilation of an object list for the system, 2) collection of the characteristic curves of the components, and 3) measurement of the load profiles of the heat and volume-flow demand. Instead of modifying the system manually and testing the solution by simulation, the second step was the creation of a global optimization program. The objective was to minimize the total energy costs for one year. We compare two different topologies and show opportunities for significant savings.}, language = {en} } @article{AltherrEdererPoettgenetal.2015, author = {Altherr, Lena and Ederer, Thorsten and P{\"o}ttgen, Philipp and Lorenz, Ulf and Pelz, Peter F.}, title = {Multicriterial optimization of technical systems considering multiple load and availability scenarios}, series = {Applied Mechanics and Materials}, volume = {807}, journal = {Applied Mechanics and Materials}, editor = {Pelz, Peter F. and Groche, Peter}, isbn = {1660-9336}, doi = {10.4028/www.scientific.net/AMM.807.247}, pages = {247 -- 256}, year = {2015}, abstract = {Cheap does not imply cost-effective -- this is rule number one of zeitgeisty system design. The initial investment accounts only for a small portion of the lifecycle costs of a technical system. In fluid systems, about ninety percent of the total costs are caused by other factors like power consumption and maintenance. With modern optimization methods, it is already possible to plan an optimal technical system considering multiple objectives. In this paper, we focus on an often neglected contribution to the lifecycle costs: downtime costs due to spontaneous failures. Consequently, availability becomes an issue.}, language = {en} } @article{BankOrzadaSmitsetal.2015, author = {Bank, Bart L. van de and Orzada, Stephan and Smits, Frits and Lagemaat, Miriam W. and Rodgers, Christopher T. and Bitz, Andreas and Scheenen, Tom W. J.}, title = {Optimized (31) P MRS in the human brain at 7 T with a dedicated RF coil setup}, series = {NMR in Biomedicine}, volume = {28}, journal = {NMR in Biomedicine}, number = {11}, publisher = {Wiley}, address = {Weinheim}, issn = {1099-1492}, doi = {10.1002/nbm.3422}, pages = {1570 -- 1578}, year = {2015}, language = {en} } @article{NoureddineBitzLaddetal.2015, author = {Noureddine, Yacine and Bitz, Andreas and Ladd, Mark E. and Th{\"u}rling, Markus and Ladd, Susanne C. and Schaefers, Gregor and Kraff, Oliver}, title = {Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {28}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {1352-8661}, doi = {10.1007/s10334-015-0499-y}, pages = {577 -- 590}, year = {2015}, language = {en} } @article{LagemaatMaasVosetal.2015, author = {Lagemaat, Miriam W. and Maas, Marnix C. and Vos, Eline K. and Bitz, Andreas and Orzada, Stephan and Weiland, Elisabeth and Uden, Mark J. van and Kobus, Thiele and Heerschap, Arend and Scheenen, Tom W. J.}, title = {(31) P MR spectroscopic imaging of the human prostate at 7 T: T1 relaxation times, Nuclear Overhauser Effect, and spectral characterization}, series = {Magnetic Resonance in Medicine}, volume = {73}, journal = {Magnetic Resonance in Medicine}, number = {3}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.25209}, pages = {909 -- 920}, year = {2015}, language = {en} } @article{KlingeOttoMuehl2015, author = {Klinge, Uwe and Otto, Jens and M{\"u}hl, Thomas}, title = {High Structural Stability of Textile Implants Prevents Pore Collapse and Preserves Effective Porosity at Strain}, series = {BioMed Research International}, volume = {2015}, journal = {BioMed Research International}, issn = {2314-6133 (Print)}, doi = {10.1155/2015/953209}, pages = {7 pages}, year = {2015}, language = {en} } @article{FerreinSteinbauer2016, author = {Ferrein, Alexander and Steinbauer, Gerald}, title = {20 Years of RoboCup - A Subjective Retrospection}, series = {KI - K{\"u}nstliche Intelligenz}, volume = {30}, journal = {KI - K{\"u}nstliche Intelligenz}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {1610-1987}, doi = {10.1007/s13218-016-0449-5}, pages = {225 -- 232}, year = {2016}, abstract = {This summer, RoboCup competitions were held for the 20th time in Leipzig, Germany. It was the second time that RoboCup took place in Germany, 10 years after the 2006 RoboCup in Bremen. In this article, we give an overview on the latest developments of RoboCup and what happened in the different leagues over the last decade. With its 20th edition, RoboCup clearly is a success story and a role model for robotics competitions. From our personal view point, we acknowledge this by giving a retrospection about what makes RoboCup such a success.}, language = {en} } @article{LeingartnerMaurerFerreinetal.2016, author = {Leingartner, Max and Maurer, Johannes and Ferrein, Alexander and Steinbauer, Gerald}, title = {Evaluation of Sensors and Mapping Approaches for Disasters in Tunnels}, series = {Journal of Field Robotics}, volume = {33}, journal = {Journal of Field Robotics}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1556-4967}, doi = {10.1002/rob.21611}, pages = {1037 -- 1057}, year = {2016}, abstract = {Ground or aerial robots equipped with advanced sensing technologies, such as three-dimensional laser scanners and advanced mapping algorithms, are deemed useful as a supporting technology for first responders. A great deal of excellent research in the field exists, but practical applications at real disaster sites are scarce. Many projects concentrate on equipping robots with advanced capabilities, such as autonomous exploration or object manipulation. In spite of this, realistic application areas for such robots are limited to teleoperated reconnaissance or search. In this paper, we investigate how well state-of-the-art and off-the-shelf components and algorithms are suited for reconnaissance in current disaster-relief scenarios. The basic idea is to make use of some of the most common sensors and deploy some widely used algorithms in a disaster situation, and to evaluate how well the components work for these scenarios. We acquired the sensor data from two field experiments, one from a disaster-relief operation in a motorway tunnel, and one from a mapping experiment in a partly closed down motorway tunnel. Based on these data, which we make publicly available, we evaluate state-of-the-art and off-the-shelf mapping approaches. In our analysis, we integrate opinions and replies from first responders as well as from some algorithm developers on the usefulness of the data and the limitations of the deployed approaches, respectively. We discuss the lessons we learned during the two missions. These lessons are interesting for the community working in similar areas of urban search and rescue, particularly reconnaissance and search.}, language = {en} } @article{FerreinSchifferBooysenetal.2016, author = {Ferrein, Alexander and Schiffer, Stefan and Booysen, T. and Stopforth, R.}, title = {Why it is harder to run RoboCup in South Africa: Experiences from German South African collaborations}, series = {International Journal of Advanced Robotic Systems}, volume = {13}, journal = {International Journal of Advanced Robotic Systems}, number = {5}, issn = {1729-8806}, doi = {10.1177/1729881416662789}, pages = {1 -- 13}, year = {2016}, abstract = {Robots are widely used as a vehicle to spark interest in science and technology in learners. A number of initiatives focus on this issue, for instance, the Roberta Initiative, the FIRST Lego League, the World Robot Olympiad and RoboCup Junior. Robotic competitions are valuable not only for school learners but also for university students, as the RoboCup initiative shows. Besides technical skills, the students get some project exposure and experience what it means to finish their tasks on time. But qualifying students for future high-tech areas should not only be for students from developed countries. In this article, we present our experiences with research and education in robotics within the RoboCup initiative, in Germany and South Africa; we report on our experiences with trying to get the RoboCup initiative in South Africa going. RoboCup has a huge support base of academic institutions in Germany; this is not the case in South Africa. We present our 'north-south' collaboration initiatives in RoboCup between Germany and South Africa and discuss some of the reasons why we think it is harder to run RoboCup in South Africa.}, language = {en} } @article{FerreinSteinbauer2016, author = {Ferrein, Alexander and Steinbauer, Gerald}, title = {Looking back on 20 Years of RoboCup}, series = {KI - K{\"u}nstliche Intelligenz}, volume = {30}, journal = {KI - K{\"u}nstliche Intelligenz}, number = {3-4}, publisher = {Springer}, address = {Berlin}, issn = {1610-1987}, doi = {10.1007/s13218-016-0443-y}, pages = {321 -- 323}, year = {2016}, language = {en} } @article{OrzadaLaddBitz2016, author = {Orzada, Stephan and Ladd, Mark E. and Bitz, Andreas}, title = {A method to approximate maximum local SAR in multichannel transmit MR systems without transmit phase information}, series = {Magnetic Resonance in Medicine}, volume = {78}, journal = {Magnetic Resonance in Medicine}, number = {2}, publisher = {International Society for Magnetic Resonance in Medicine}, issn = {1522-2594}, doi = {10.1002/mrm.26398}, pages = {805 -- 811}, year = {2016}, abstract = {Purpose To calculate local specific absorption rate (SAR) correctly, both the amplitude and phase of the signal in each transmit channel have to be known. In this work, we propose a method to derive a conservative upper bound for the local SAR, with a reasonable safety margin without knowledge of the transmit phases of the channels. Methods The proposed method uses virtual observation points (VOPs). Correction factors are calculated for each set of VOPs that prevent underestimation of local SAR when the VOPs are applied with the correct amplitudes but fixed phases. Results The proposed method proved to be superior to the worst-case calculation based on the maximum eigenvalue of the VOPs. The mean overestimation for six coil setups could be reduced, whereas no underestimation of the maximum local SAR occurred. In the best investigated case, the overestimation could be reduced from a factor of 3.3 to a factor of 1.7. Conclusion The upper bound for the local SAR calculated with the proposed method allows a fast estimation of the local SAR based on power measurements in the transmit channels and facilitates SAR monitoring in systems that do not have the capability to monitor transmit phases}, language = {en} } @article{ChenSchoembergKraffetal.2016, author = {Chen, Bixia and Schoemberg, Tobias and Kraff, Oliver and Dammann, Philipp and Bitz, Andreas and Schlamann, Marc and Quick, Harald H. and Ladd, Mark E. and Sure, Ulrich and Wrede, Karsten H.}, title = {Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {29}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {1352-8661}, doi = {10.1007/s10334-016-0548-1}, pages = {389 -- 398}, year = {2016}, abstract = {Objective This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. Materials and methods The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T₁-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T₂-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. Results Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. Conclusion Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI.}, language = {en} } @article{SchifferFerrein2016, author = {Schiffer, Stefan and Ferrein, Alexander}, title = {Decision-Theoretic Planning with Fuzzy Notions in GOLOG}, series = {International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems}, volume = {24}, journal = {International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems}, number = {Issue Suppl. 2}, publisher = {World Scientific}, address = {Singapur}, issn = {1793-6411}, doi = {10.1142/S0218488516400134}, pages = {123 -- 143}, year = {2016}, abstract = {In this paper we present an extension of the action language Golog that allows for using fuzzy notions in non-deterministic argument choices and the reward function in decision-theoretic planning. Often, in decision-theoretic planning, it is cumbersome to specify the set of values to pick from in the non-deterministic-choice-of-argument statement. Also, even for domain experts, it is not always easy to specify a reward function. Instead of providing a finite domain for values in the non-deterministic-choice-of-argument statement in Golog, we now allow for stating the argument domain by simply providing a formula over linguistic terms and fuzzy uents. In Golog's forward-search DT planning algorithm, these formulas are evaluated in order to find the agent's optimal policy. We illustrate this in the Diner Domain where the agent needs to calculate the optimal serving order.}, language = {en} } @article{FerreinSteinbauer2016, author = {Ferrein, Alexander and Steinbauer, Gerald}, title = {The Interplay of Aldebaran and RoboCup}, series = {KI - K{\"u}nstliche Intelligenz}, volume = {30}, journal = {KI - K{\"u}nstliche Intelligenz}, number = {3-4}, publisher = {Springer}, address = {Berlin}, issn = {1610-1987}, doi = {10.1007/s13218-016-0440-1}, pages = {325 -- 326}, year = {2016}, language = {en} } @article{SchoppDollGraeseretal.2016, author = {Schopp, Christoph and Doll, Timo and Gr{\"a}ser, Ulrich and Harzheim, Thomas and Heuermann, Holger and Kling, Rainer and Marso, Michael}, title = {Capacitively Coupled High-Pressure Lamp Using Coaxial Line Networks}, series = {IEEE Transactions on Microwave Theory and Techniques}, volume = {64}, journal = {IEEE Transactions on Microwave Theory and Techniques}, number = {10}, publisher = {IEEE}, address = {New York, NY}, issn = {0018-9480}, doi = {10.1109/TMTT.2016.2600326}, pages = {3363 -- 3368}, year = {2016}, abstract = {This paper describes the development of a capacitively coupled high-pressure lamp with input power between 20 and 43 W at 2.45 GHz, using a coaxial line network. Compared with other electrodeless lamp systems, no cavity has to be used and a reduction in the input power is achieved. Therefore, this lamp is an alternative to the halogen incandescent lamp for domestic lighting. To serve the demands of domestic lighting, the filling of the lamp is optimized over all other resulting requirements, such as high efficacy at low induced powers and fast startups. A workflow to develop RF-driven plasma applications is presented, which makes use of the hot S-parameter technique. Descriptions of the fitting process inside a circuit and FEM simulator are given. Results of the combined ignition and operation network from simulations and measurements are compared. An initial prototype is built and measurements of the lamp's lighting properties are presented along with an investigation of the efficacy optimizations using large signal amplitude modulation. With this lamp, an efficacy of 135 lmW -1 is achieved.}, language = {en} } @article{SteinbauerFerrein2016, author = {Steinbauer, Gerald and Ferrein, Alexander}, title = {20 Years of RoboCup}, series = {KI - K{\"u}nstliche Intelligenz}, volume = {30}, journal = {KI - K{\"u}nstliche Intelligenz}, number = {3-4}, publisher = {Springer}, address = {Berlin}, issn = {1610-1987}, doi = {10.1007/s13218-016-0442-z}, pages = {221 -- 224}, year = {2016}, language = {en} }