@article{MikulicsAdamKordosetal.2005, author = {Mikulics, M. and Adam, R. and Kordos, P. and F{\"o}rster, Arnold and L{\"u}th, H. and Wu, S. and Zheng, X. and Sobolewski, R.}, title = {Ultrafast low-temperature-grown epitaxial GaAs photodetectors transferred on flexible plastic substrates}, series = {IEEE photonics technology letters : IEEE PTL. 17 (2005), H. 8}, journal = {IEEE photonics technology letters : IEEE PTL. 17 (2005), H. 8}, isbn = {1041-1135}, pages = {1725 -- 1727}, year = {2005}, language = {en} } @article{FoersterLepsaFreundt2007, author = {F{\"o}rster, Arnold and Lepsa, M. I. and Freundt, D.}, title = {Hot electron injector Gunn diode for advanced driver assistance systems}, series = {Applied physics A: materials science and processing. 87 (2007), H. 3}, journal = {Applied physics A: materials science and processing. 87 (2007), H. 3}, isbn = {0947-8396}, pages = {545 -- 558}, year = {2007}, language = {en} } @article{WagnerMolinaBisellietal.2007, author = {Wagner, Torsten and Molina, R. and Biselli, Manfred and Canzoneri, Michele and Schnitzler, Thomas and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {A light-addressable potentiometric sensor system for fast, simultaneous and spatial detection of the metabolic activity of biological cells}, series = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, journal = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, publisher = {IEEE}, address = {Piscataway}, isbn = {1-4244-0841-5}, pages = {1107 -- 1110}, year = {2007}, language = {en} } @article{SchoeningKloock2007, author = {Sch{\"o}ning, Michael Josef and Kloock, Joachim P.}, title = {About 20 years of silicon-based thin-film sensors with chalcogenide glass materials for heavy metal analysis: Technological aspects of fabrication and miniaturization}, series = {Electroanalysis. 19 (2007), H. 19-20}, journal = {Electroanalysis. 19 (2007), H. 19-20}, isbn = {1040-0397}, pages = {2029 -- 2038}, year = {2007}, language = {en} } @article{WagnerSchoening2007, author = {Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-addressable potentiometric sensors (LAPS): recent trends and applications}, series = {Electrochemical sensor analysis / edited by S. Alegret ...}, journal = {Electrochemical sensor analysis / edited by S. Alegret ...}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-444-53053-0}, pages = {87 -- 128}, year = {2007}, language = {en} } @article{WagnerKloockSchoening2007, author = {Wagner, Torsten and Kloock, Joachim P. and Sch{\"o}ning, Michael Josef}, title = {Determination of cadmium concentration and pH value in aqueous solutions by means of a handheld light-addressable potentiometric sensor (LAPS) device}, series = {Electrochemical sensor analysis / edited by S. Alegret ...}, journal = {Electrochemical sensor analysis / edited by S. Alegret ...}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-444-53133-9}, pages = {e35 -- e44}, year = {2007}, language = {en} } @article{WagnerWernerMiyamotoetal.2012, author = {Wagner, Torsten and Werner, Frederik and Miyamoto, Ko-Ichiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging}, series = {Sensors and Actuators B: Chemical}, volume = {170}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2010.12.003}, pages = {34 -- 39}, year = {2012}, abstract = {Chemical imaging systems allow the visualisation of the distribution of chemical species on the sensor surface. This work represents a new flexible approach to read out light-addressable potentiometric sensors (LAPS) with the help of a digital light processing (DLP) set-up. The DLP, known well for video projectors, consists of a mirror-array MEMS device, which allows fast and flexible generation of light patterns. With the help of these light patterns, the sensor surface of the LAPS device can be addressed. The DLP approach has several advantages compared to conventional LAPS set-ups, e.g., the spot size and the shape of the light pointer can be changed easily and no mechanical movement is necessary, which reduces the size of the set-up and increases the stability and speed of the measurement. In addition, the modulation frequency and intensity of the light beam are important parameters of the LAPS set-up. Within this work, the authors will discuss two different ways of light modulation by the DLP set-up, investigate the influence of different modulation frequencies and different light intensities as well as demonstrate the scanning capabilities of the new set-up by pH mapping on the sensor surface.}, language = {en} } @article{WernerSchusserSpalthahnetal.2011, author = {Werner, Frederik and Schusser, Sebastian and Spalthahn, Heiko and Wagner, Torsten and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Field-programmable gate array based controller for multi spot light-addressable potentiometric sensors with integrated signal correction mode}, series = {Electrochimica Acta}, volume = {56}, journal = {Electrochimica Acta}, number = {26}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2011.03.012}, pages = {9656 -- 9660}, year = {2011}, abstract = {A light-addressable potentiometric sensor (LAPS) can measure the concentration of one or several analytes at the sensor surface simultaneously in a spatially resolved manner. A modulated light pointer stimulates the semiconductor structure at the area of interest and a responding photocurrent can be read out. By simultaneous stimulation of several areas with light pointers of different modulation frequencies, the read out can be performed at the same time. With the new proposed controller electronic based on a field-programmable gate array (FPGA), it is possible to control the modulation frequencies, phase shifts, and light brightness of multiple light pointers independently and simultaneously. Thus, it is possible to investigate the frequency response of the sensor, and to examine the analyte concentration by the determination of the surface potential with the help of current/voltage curves and phase/voltage curves. Additionally, the ability to individually change the light intensities of each light pointer is used to perform signal correction.}, language = {en} } @article{PaczkowskiWeissbeckerSchoeningetal.2011, author = {Paczkowski, Sebastian and Weißbecker, Bernhard and Sch{\"o}ning, Michael Josef and Sch{\"u}tz, Stefan}, title = {Biosensors on the Basis of Insect Olfaction}, series = {Insect biotechnology / Andreas Vilcinskas, ed.}, journal = {Insect biotechnology / Andreas Vilcinskas, ed.}, publisher = {Springer}, address = {Dordrecht [u.a.]}, isbn = {978-90-481-9640-1}, pages = {225 -- 240}, year = {2011}, language = {en} } @article{BohrnStuetzFleischeretal.2011, author = {Bohrn, Ulrich and St{\"u}tz, Evamaria and Fleischer, Maximilian and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Eukaryotic cell lines as a sensitive layer for direct monitoring of carbon monoxide}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1345 -- 1350}, year = {2011}, language = {en} } @article{WernerKrumbeSchumacheretal.2011, author = {Werner, Frederik and Krumbe, Christoph and Schumacher, Katharina and Groebel, Simone and Spelthahn, Heiko and Stellberg, Michael and Wagner, Torsten and Yoshinobu, Tatsuo and Selmer, Thorsten and Keusgen, Michael and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1340 -- 1344}, year = {2011}, language = {en} } @article{KirchnerOberlaenderFriedrichetal.2011, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Friedrich, Peter and Berger, J{\"o}rg and Suso, Henri-Pierre and Kupyna, Andriy and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Optimisation and fabrication of a calorimetric gas sensor built up on a polyimide substrate for H2O2 monitoring}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1235 -- 1240}, year = {2011}, language = {en} } @article{ReisertGeisslerFloerkeetal.2011, author = {Reisert, Steffen and Geissler, Hanno and Fl{\"o}rke, Rudolf and N{\"a}ther, Niko and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Towards a multi-sensor system for the evaluation of aseptic processes employing hydrogen peroxide vapour (H2O2)}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1351 -- 1356}, year = {2011}, language = {en} } @article{WagnerMiyamotoShigiharaetal.2011, author = {Wagner, Torsten and Miyamoto, Ko-ichiro and Shigihara, Noriko and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Microfluidic systems with free definable sensor spots by an integrated light-addressable potentiometric sensor}, series = {Procedia Engineering. 25 (2011)}, journal = {Procedia Engineering. 25 (2011)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1877-7058}, pages = {791 -- 794}, year = {2011}, language = {en} } @article{WernerWagnerMiyamotoetal.2011, author = {Werner, Frederik and Wagner, Torsten and Miyamoto, Ko-ichiro and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up}, series = {Procedia Engineering. 25 (2011)}, journal = {Procedia Engineering. 25 (2011)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1877-7058}, pages = {346 -- 349}, year = {2011}, language = {en} } @article{MiyamotoKanekoMatsuoetal.2012, author = {Miyamoto, Ko-ichiro and Kaneko, Kazumi and Matsuo, Akira and Wagner, Torsten and Kanoh, Shin{\´i}chiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Miniaturized chemical imaging sensor system using an OLED display panel}, series = {Sensors and Actuators B: Chemical}, volume = {170}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2011.02.029}, pages = {82 -- 87}, year = {2012}, abstract = {The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the two-dimensional distribution of specific ions or molecules in the solution. In this study, we developed a miniaturized chemical imaging sensor system with an OLED display panel as a light source that scans the sensor plate. In the proposed configuration, the display panel is placed directly below the sensor plate and illuminates the back surface. The measured area defined by illumination can be arbitrarily customized to fit the size and the shape of the sample to be measured. The waveform of the generated photocurrent, the current-voltage characteristics and the pH sensitivity were investigated and pH imaging with this miniaturized system was demonstrated.}, language = {en} } @article{KirchnerOberlaenderFriedrichetal.2012, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Friedrich, Peter and Berger, J{\"o}rg and Rysstad, Gunnar and Sch{\"o}ning, Michael Josef and Keusgen, Michael}, title = {Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry}, series = {Sensors and Actuators B: Chemical}, volume = {170}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2011.01.032}, pages = {60 -- 66}, year = {2012}, abstract = {A calorimetric gas sensor is presented for the monitoring of vapour-phase H2O2 at elevated temperature during sterilisation processes in aseptic food industry. The sensor was built up on a flexible polyimide foil (thickness: 25 μm) that has been chosen due to its thermal stability and low thermal conductivity. The sensor set-up consists of two temperature-sensitive platinum thin-film resistances passivated by a layer of SU-8 photo resist and catalytically activated by manganese(IV) oxide. Instead of an active heating structure, the calorimetric sensor utilises the elevated temperature of the evaporated H2O2 aerosol. In an experimental test rig, the sensor has shown a sensitivity of 4.78 °C/(\%, v/v) in a H2O2 concentration range of 0\%, v/v to 8\%, v/v. Furthermore, the sensor possesses the same, unchanged sensor signal even at varied medium temperatures between 210 °C and 270 °C of the gas stream. At flow rates of the gas stream from 8 m3/h to 12 m3/h, the sensor has shown only a slightly reduced sensitivity at a low flow rate of 8 m3/h. The sensor characterisation demonstrates the suitability of the calorimetric gas sensor for monitoring the efficiency of industrial sterilisation processes.}, language = {en} } @article{IkenKirsanovLeginetal.2012, author = {Iken, Heiko and Kirsanov, D. and Legin, A. and Sch{\"o}ning, Michael Josef}, title = {Novel Thin-Film Polymeric Materials for the Detection of Heavy Metals}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.148}, pages = {322 -- 325}, year = {2012}, abstract = {A variety of transition metals, e.g., copper, zinc, cadmium, lead, etc. are widely used in industry as components for wires, coatings, alloys, batteries, paints and so on. The inevitable presence of transition metals in industrial processes implies the ambition of developing a proper analytical technique for their adequate monitoring. Most of these elements, especially lead and cadmium, are acutely toxic for biological organisms. Quantitative determination of these metals at low activity levels in different environmental and industrial samples is therefore a vital task. A promising approach to achieve an at-side or on-line monitoring on a miniaturized and cost efficient way is the combination of a common potentiometric sensor array with heavy metal-sensitive thin-film materials, like chalcogenide glasses and polymeric materials, respectively.}, language = {en} } @article{MiyamotoIchimuraWagneretal.2012, author = {Miyamoto, K. and Ichimura, H. and Wagner, Torsten and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Chemical Imaging of ion Diffusion in a Microfluidic Channel}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.289}, pages = {886 -- 889}, year = {2012}, abstract = {The chemical imaging sensor is a chemical sensor which is capable of visualizing the spatial distribution of chemical species in sample solution. In this study, a novel measurement system based on the chemical imaging sensor was developed to observe the inside of a Y-shaped microfluidic channel while injecting two sample solutions from two branches. From the collected chemical images, it was clearly observed that the injected solutions formed laminar flows in the microfluidic channel. In addition, ion diffusion across the laminar flows was observed. This label-free method can acquire quantitative data of ion distribution and diffusion in microfluidic devices, which can be used to determine the diffusion coefficients, and therefore, the molecular weights of chemical species in the sample solution.}, language = {en} } @article{WagnerShigiaharaMiyamotoetal.2012, author = {Wagner, Torsten and Shigiahara, N. and Miyamoto, K. and Suzurikawa, J. and Finger, F. and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {Light-addressable Potentiometric Sensors and Light-addressable Electrodes as a Combined Sensor-and-manipulator Microsystem with High Flexibility}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.290}, pages = {890 -- 893}, year = {2012}, abstract = {This work describes the novel combination of the light-addressable electrode (LAE) and the light-addressable potentiometric sensor (LAPS) into a microsystem set-up. Both the LAE as well as the LAPS shares the principle of addressing the active spot by means of a light beam. This enables both systems to manipulate resp. to detect an analyte with a high spatial resolution. Hence, combining both principles into a single set-up enables the active stimulation e.g., by means of electrolysis and a simultaneous observation e.g., the response of an entrapped biological cell by detection of extracellular pH changes. The work will describe the principles of both technologies and the necessary steps to integrate them into a single set-up. Furthermore, examples of application and operation of such systems will be presented.}, language = {en} }