@article{KowalskiLinderZierkeetal.2016, author = {Kowalski, Julia and Linder, Peter and Zierke, S. and Wulfen, B. van and Clemens, J. and Konstantinidis, K. and Ameres, G. and Hoffmann, R. and Mikucki, J. and Tulaczyk, S. and Funke, O. and Blandfort, D. and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecker, S. and Plescher, Engelbert and Sch{\"o}ngarth, Sarah and Dachwald, Bernd and Digel, Ilya and Artmann, Gerhard and Eliseev, D. and Heinen, D. and Scholz, F. and Wiebusch, C. and Macht, S. and Bestmann, U. and Reineking, T. and Zetzsche, C. and Schill, K. and F{\"o}rstner, R. and Niedermeier, H. and Szumski, A. and Eissfeller, B. and Naumann, U. and Helbing, K.}, title = {Navigation technology for exploration of glacier ice with maneuverable melting probes}, series = {Cold Regions Science and Technology}, journal = {Cold Regions Science and Technology}, number = {123}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-232X}, doi = {10.1016/j.coldregions.2015.11.006}, pages = {53 -- 70}, year = {2016}, abstract = {The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept.}, language = {en} } @article{CehreliAkpinarTemizArtmannetal.2015, author = {Cehreli, Ruksan and Akpinar, Hale and Temiz Artmann, Ayseg{\"u}l and Sagol, Ozgul}, title = {Effects of Glutamine and Omega-3 Fatty Acids on Erythrocyte Deformability and Oxidative Damage in Rat Model of Enterocolitis}, series = {Gastroenterology Research}, volume = {8}, journal = {Gastroenterology Research}, number = {5}, issn = {1918-2813}, doi = {10.14740/gr683w}, pages = {265 -- 273}, year = {2015}, language = {en} } @article{HauserKotliarTholenetal.2015, author = {Hauser, C. and Kotliar, Konstantin and Tholen, S. and Hasenau, A. and Suttmann, Y. and Renders, L. and Heemann, U. and Baumann, M. and Schmaderer, C.}, title = {Dynamische retinale Gef{\"a}ßreaktion bei H{\"a}modialysepatienten}, series = {Nieren- und Hochdruckkrankheiten}, volume = {44}, journal = {Nieren- und Hochdruckkrankheiten}, number = {11}, publisher = {Dustri-Verlag}, address = {Oberhaching}, issn = {0300-5224}, doi = {10.5414/NHX01743a}, pages = {480 -- 480}, year = {2015}, language = {de} } @article{GrundmannDachwaldGrimmetal.2015, author = {Grundmann, Jan Thimo and Dachwald, Bernd and Grimm, Christian D. and Kahle, Ralph and Koch, Aaron Dexter and Krause, Christian and Lange, Caroline and Quantius, Dominik and Ulamec, Stephan}, title = {Spacecraft for Hypervelocity Impact Research - An Overview of Capabilities, Constraints and the Challenges of Getting There}, series = {Procedia Engineering}, volume = {Vol. 103}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.04.021}, pages = {151 -- 158}, year = {2015}, language = {en} } @article{FrotscherKochStaat2015, author = {Frotscher, Ralf and Koch, Jan-Peter and Staat, Manfred}, title = {Computational investigation of drug action on human-induced stem cell derived cardiomyocytes}, series = {Journal of biomechanical engineering}, volume = {Vol. 137}, journal = {Journal of biomechanical engineering}, number = {iss. 7}, publisher = {ASME}, address = {New York}, issn = {1528-8951 (E-Journal); 0148-0731 (Print)}, doi = {10.1115/1.4030173}, pages = {071002-1 -- 071002-7}, year = {2015}, language = {en} } @article{KonstantinidisFloresMartinezDachwaldetal.2015, author = {Konstantinidis, Konstantinos and Flores Martinez, Claudio and Dachwald, Bernd and Ohndorf, Andreas and Dykta, Paul and Bowitz, Pascal and Rudolph, Martin and Digel, Ilya and Kowalski, Julia and Voigt, Konstantin and F{\"o}rstner, Roger}, title = {A lander mission to probe subglacial water on Saturn's moon enceladus for life}, series = {Acta astronautica}, volume = {Vol. 106}, journal = {Acta astronautica}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-2030 (E-Journal); 0094-5765 (Print)}, pages = {63 -- 89}, year = {2015}, language = {en} } @article{SeynnesBojsenMollerAlbrachtetal.2015, author = {Seynnes, O. R. and Bojsen-Moller, J. and Albracht, Kirsten and Arndt, A. and Cronin, N. J. and Finni, T. and Magnusson, S. P.}, title = {Ultrasound-based testing of tendon mechanical properties: a critical evaluation}, series = {Journal of Applied Physiology}, volume = {118}, journal = {Journal of Applied Physiology}, number = {2}, issn = {8750-7587}, doi = {10.1152/japplphysiol.00849.2014}, pages = {133 -- 141}, year = {2015}, language = {en} } @article{SeifarthGossmannGrosseetal.2015, author = {Seifarth, Volker and Goßmann, Matthias and Grosse, J. O. and Becker, C. and Heschel, I. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds}, series = {Urologia Internationalis}, volume = {2015}, journal = {Urologia Internationalis}, number = {95}, publisher = {Karger}, address = {Basel}, issn = {0042-1138}, doi = {10.1159/000368419}, pages = {106 -- 113}, year = {2015}, language = {en} } @article{AkimbekovDigelO’Herasetal.2015, author = {Akimbekov, Nuraly S. and Digel, Ilya and O'Heras, C. and Tastambek, K.T. and Savitskaya, I.S. and Ualyeva, P.S. and Mansurov, Z.A. and Zhubanova, A.A.}, title = {Adsorption of bacterial lipopol ysaccharides on carbonized ri ce husks obtained in the batch experiments}, series = {KazNU Bulletin. Biology series}, volume = {60}, journal = {KazNU Bulletin. Biology series}, number = {No 1/2}, issn = {1563-0218}, pages = {144 -- 148}, year = {2015}, language = {en} } @article{DuongNguyenTranetal.2015, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Tran, Thanh Ngoc and Tolba, R. H. and Staat, Manfred}, title = {Influence of refrigerated storage on tensile mechanical properties of porcine liver and spleen}, series = {International biomechanics}, volume = {Vol. 2}, journal = {International biomechanics}, number = {Iss. 1}, publisher = {Taylor \& Francis}, address = {London}, issn = {2333-5432}, doi = {10.1080/23335432.2015.1049295}, pages = {79 -- 88}, year = {2015}, language = {en} } @article{DuongNguyenStaat2015, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Staat, Manfred}, title = {Physical response of hyperelastic models for composite materials and soft tissues}, series = {Asia pacific journal on computational engineering}, volume = {2}, journal = {Asia pacific journal on computational engineering}, number = {3 (December 2015)}, issn = {2196-1166}, doi = {10.1186/s40540-015-0015-x}, pages = {1 -- 18}, year = {2015}, language = {en} } @article{YangKriechbaumerAlbrachtetal.2015, author = {Yang, Peng-Fei and Kriechbaumer, Andreas and Albracht, Kirsten and Sanno, Maximilian and Ganse, Bergita and Koy, Timmo and Shang, Peng and Br{\"u}ggemann, Gert-Peter and M{\"u}ller, Lars Peter and Rittweger, J{\"o}rn}, title = {On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo}, series = {Journal of Biomechanics}, volume = {48}, journal = {Journal of Biomechanics}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2014.12.031}, pages = {456 -- 464}, year = {2015}, language = {en} } @article{FuestKotliarWalteretal.2014, author = {Fuest, Matthias and Kotliar, Konstantin and Walter, Peter and Plange, Niklas}, title = {Monitoring intraocular pressure changes after intravitreal Ranibizumab injection using rebound tonometry}, series = {Ophthalmic and physiological optics}, volume = {34}, journal = {Ophthalmic and physiological optics}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1475-1313 (E-Journal); 0275-5408 (Print)}, doi = {10.1111/opo.12134}, pages = {438 -- 444}, year = {2014}, language = {en} } @article{StadlerGarveyEmbsetal.2014, author = {Stadler, Alexander Maximilian and Garvey, Christopher J. and Embs, Jan Peter and Koza, Michael Marek and Unruh, Tobias and Artmann, Gerhard and Zaccai, Guiseppe}, title = {Picosecond dynamics in haemoglobin from different species: A quasielastic neutron scattering study}, series = {Biochimica et biophysica acta (BBA): General Subjects}, volume = {1840}, journal = {Biochimica et biophysica acta (BBA): General Subjects}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-8006 (E-Journal); 0304-4165 (Print)}, doi = {10.1016/j.bbagen.2014.06.007}, pages = {2989 -- 2999}, year = {2014}, language = {en} } @article{MartinGonzalezKotliarRiosMartinezetal.2014, author = {Martin-Gonzalez, Anabel and Kotliar, Konstantin and Rios-Martinez, Jorge and Lanzl, Ines and Navab, Nassir}, title = {Mediated-reality magnification for macular degeneration rehabilitation}, series = {Journal of Modern Optics}, volume = {61}, journal = {Journal of Modern Optics}, number = {17}, publisher = {Taylor \& Francis}, address = {London}, issn = {1362-3044}, doi = {10.1080/09500340.2014.936110}, pages = {1400 -- 1408}, year = {2014}, language = {en} } @article{TuraliyevaYeshibaevDigeletal.2014, author = {Turaliyeva, M. and Yeshibaev, A. and Digel, Ilya and Elibayeva, G. and Sydykova, A. and Uspabayeva, A. and Dosybayeva, G. and Zhylysbayeva, A. and Lakhanova, K.}, title = {Molecular-genetic identification of emerged novel invasive pathogens of Asiatic Elm Ulmus pumila L}, series = {Life science journal}, volume = {11}, journal = {Life science journal}, number = {Spec. iss. 5s}, publisher = {Marsland Press}, address = {New York}, issn = {1097-8135}, doi = {10.7537/marslsj1105s14.33}, pages = {171 -- 175}, year = {2014}, abstract = {The dwarf elm Ulmus pumila L. (Ulmaceae) is one of indigenous species of flora in Kazakhstan and forms a basis of dendroflora in virtually all settlements of the region. In the past decade, multiple outbreaks of previously unknown diseases of the small-leaved elm have been registered. In our study, by the molecular-genetic analysis it was found that the pathogens responsible for the outbreaks are microfungi belonging to the genus Fusarium - F. solani and F. oxysporum. The nucleotide sequences (ITS regions) isolated from the diseased trees showed very high similarity with the GenBank control numbers EU625403.1 and FJ478128.1 (100.0 and 99.0 \% respectively). Oncoming research will focus on the search of natural microbial antagonists of the discovered phytopathogens.}, language = {en} } @article{AkimbekovDigelOHerasetal.2014, author = {Akimbekov, Nuraly S. and Digel, Ilya and O´Heras, C. and Tastambek, K.T. and Savitskaya, I.S. and Ualyeva, P.S. and Mansurov, Z.A. and Zhubanova, A.A.}, title = {Adsorption of bacterial lipopolysaccharides on carbonized rice husks obtained in the batch experiments}, series = {Experimental Biology}, volume = {60}, journal = {Experimental Biology}, number = {1/2}, publisher = {Al-Farabi Kazakh National University}, address = {Almaty}, issn = {1563-0218}, pages = {144 -- 148}, year = {2014}, abstract = {The scope of this study is the measurement of endotoxin adsorption rate for carbonized rice husk. It showed good adsorption properties for LPS. During the batch experiments, several techniques were used and optimized for improving the material's adsorption behavior. Also, with the results obtained it was possible to differentiate the materials according to their adsorption capacity and kinetic characteristics.}, language = {en} } @article{ArinkinDigelPorstetal.2014, author = {Arinkin, Vladimir and Digel, Ilya and Porst, Dariusz and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {Phenotyping date palm varieties via leaflet cross-sectional imaging and artificial neural network application}, series = {BMC bioinformatics}, volume = {15}, journal = {BMC bioinformatics}, number = {55}, issn = {1471-2105}, doi = {10.1186/1471-2105-15-55}, pages = {1 -- 8}, year = {2014}, abstract = {Background True date palms (Phoenix dactylifera L.) are impressive trees and have served as an indispensable source of food for mankind in tropical and subtropical countries for centuries. The aim of this study is to differentiate date palm tree varieties by analysing leaflet cross sections with technical/optical methods and artificial neural networks (ANN). Results Fluorescence microscopy images of leaflet cross sections have been taken from a set of five date palm tree cultivars (Hewlat al Jouf, Khlas, Nabot Soltan, Shishi, Um Raheem). After features extraction from images, the obtained data have been fed in a multilayer perceptron ANN with backpropagation learning algorithm. Conclusions Overall, an accurate result in prediction and differentiation of date palm tree cultivars was achieved with average prediction in tenfold cross-validation is 89.1\% and reached 100\% in one of the best ANN.}, language = {en} } @article{FrotscherStaat2014, author = {Frotscher, Ralf and Staat, Manfred}, title = {Stresses produced by different textile mesh implants in a tissue equivalent}, series = {BioNanoMaterials}, volume = {15}, journal = {BioNanoMaterials}, number = {1-2}, publisher = {De Gruyter}, address = {Berlin}, issn = {2191-4672 (E-Journal); 2193-066X (E-Journal); 0011-8656 (Print); 1616-0177 (Print); 2193-0651 (Print)}, doi = {10.1515/bnm-2014-0003}, pages = {25 -- 30}, year = {2014}, abstract = {Two single-incision mini-slings used for treating urinary incontinence in women are compared with respect to the stresses they produce in their surrounding tissue. In an earlier paper we experimentally observed that these implants produce considerably different stress distributions in a muscle tissue equivalent. Here we perform 2D finite element analyses to compare the shear stresses and normal stresses in the tissue equivalent for the two meshes and to investigate their failure behavior. The results clearly show that the Gynecare TVT fails for increasing loads in a zipper-like manner because it gradually debonds from the surrounding tissue. Contrary to that, the tissue at the ends of the DynaMesh-SIS direct may rupture but only at higher loads. The simulation results are in good agreement with the experimental observations thus the computational model helps to interpret the experimental results and provides a tool for qualitative evaluation of mesh implants.}, language = {en} } @article{PhamStaat2014, author = {Pham, Phu Tinh and Staat, Manfred}, title = {FEM-based shakedown analysis of hardening structures}, series = {Asia Pacific journal on computational engineering}, journal = {Asia Pacific journal on computational engineering}, number = {1}, publisher = {SpringerOpen}, address = {Berlin}, issn = {2196-1166 (E-Journal)}, doi = {10.1186/2196-1166-1-4}, pages = {Article No. 4}, year = {2014}, abstract = {This paper develops a new finite element method (FEM)-based upper bound algorithm for limit and shakedown analysis of hardening structures by a direct plasticity method. The hardening model is a simple two-surface model of plasticity with a fixed bounding surface. The initial yield surface can translate inside the bounding surface, and it is bounded by one of the two equivalent conditions: (1) it always stays inside the bounding surface or (2) its centre cannot move outside the back-stress surface. The algorithm gives an effective tool to analyze the problems with a very high number of degree of freedom. Our numerical results are very close to the analytical solutions and numerical solutions in literature.}, language = {en} }