@article{VuStaat2004, author = {Vu, Duc-Khoi and Staat, Manfred}, title = {An algorithm for shakedown analysis of structure with temperature dependent yield stress}, year = {2004}, abstract = {This work is an attempt to answer the question: How to use convex programming in shakedown analysis of structures made of materials with temperature-dependent properties. Based on recently established shakedown theorems and formulations, a dual relationship between upper and lower bounds of the shakedown limit load is found, an algorithmfor shakedown analysis is proposed. While the original problem is neither convex nor concave, the algorithm presented here has the advantage of employing convex programming tools.}, subject = {Einspielen }, language = {en} } @article{KuehnHaugnerStaatetal.2004, author = {K{\"u}hn, Raoul-Roman and Haugner, Werner and Staat, Manfred and Sponagel, Stefan}, title = {A Two Phase Mixture Model based on Bone Observation}, year = {2004}, abstract = {An optimization method is developed to describe the mechanical behaviour of the human cancellous bone. The method is based on a mixture theory. A careful observation of the behaviour of the bone material leads to the hypothesis that the bone density is controlled by the principal stress trajectories (Wolff's law). The basic idea of the developed method is the coupling of a scalar value via an eigenvalue problem to the principal stress trajectories. On the one hand this theory will permit a prediction of the reaction of the biological bone structure after the implantation of a prosthesis, on the other hand it may be useful in engineering optimization problems. An analytical example shows its efficiency.}, subject = {Knochen}, language = {en} } @article{SeifarthGossmannGrosseetal.2015, author = {Seifarth, Volker and Goßmann, Matthias and Grosse, J. O. and Becker, C. and Heschel, I. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds}, series = {Urologia Internationalis}, volume = {2015}, journal = {Urologia Internationalis}, number = {95}, publisher = {Karger}, address = {Basel}, issn = {0042-1138}, doi = {10.1159/000368419}, pages = {106 -- 113}, year = {2015}, language = {en} } @article{MartinGonzalezKotliarRiosMartinezetal.2014, author = {Martin-Gonzalez, Anabel and Kotliar, Konstantin and Rios-Martinez, Jorge and Lanzl, Ines and Navab, Nassir}, title = {Mediated-reality magnification for macular degeneration rehabilitation}, series = {Journal of Modern Optics}, volume = {61}, journal = {Journal of Modern Optics}, number = {17}, publisher = {Taylor \& Francis}, address = {London}, issn = {1362-3044}, doi = {10.1080/09500340.2014.936110}, pages = {1400 -- 1408}, year = {2014}, language = {en} } @article{KotliarDrozdovaShamshinova2006, author = {Kotliar, Konstantin and Drozdova, G. A. and Shamshinova, A. M.}, title = {Ocular hemodinamics and contemporary methods of its assessment.
 Part I. Ocular blood circulation and its quantitative estimation}, series = {National journal Glaucoma}, volume = {Vol. 5}, journal = {National journal Glaucoma}, number = {No. 3}, issn = {2078-4104}, pages = {62 -- 73}, year = {2006}, language = {ru} } @article{KotliarLanzl2002, author = {Kotliar, Konstantin and Lanzl, I. M.}, title = {Biomechanical modeling of the aqueous humor outflow after non-penetrating glaucoma filtration surgery in the human eye}, series = {Acta of bioengineering and biomechanics}, volume = {Vol. 4}, journal = {Acta of bioengineering and biomechanics}, number = {Suppl. 1}, issn = {1509-409X}, pages = {728 -- 729}, year = {2002}, language = {de} } @article{KotliarKharoubiSchmidtTrucksaessetal.2009, author = {Kotliar, Konstantin and Kharoubi, A. and Schmidt-Trucks{\"a}ß, A. and Halle, M. and Lanzl, I.}, title = {Does internal longitudinal microstructure of retinal veins change with age in medically healthy persons?}, series = {Acta Ophthalmologica}, volume = {Vol. 87}, journal = {Acta Ophthalmologica}, number = {Suppl. S244}, publisher = {Wiley}, address = {Weinheim}, issn = {1600-0420 (E-Journal); 1755-3768 (E-Journal); 0001-639X (Print); 1395-3907 (Print); 1755-375X (Print)}, pages = {0}, year = {2009}, language = {en} } @article{KappmeyerKotliarLanzl2009, author = {Kappmeyer, K. and Kotliar, Konstantin and Lanzl, I. M.}, title = {Spielen von Blasinstrumenten und Augeninnendruck}, series = {Zeitschrift f{\"u}r praktische Augenheilkunde \& augen{\"a}rztliche Fortbildung : ZPA}, volume = {Bd. 30}, journal = {Zeitschrift f{\"u}r praktische Augenheilkunde \& augen{\"a}rztliche Fortbildung : ZPA}, issn = {1436-0322}, pages = {169 -- 171}, year = {2009}, language = {de} } @article{KotliarDrozdovaShamshinova2007, author = {Kotliar, Konstantin and Drozdova, G. A. and Shamshinova, A. M.}, title = {Ocular hemodinamics and contemporary methods of its assessment. Part III. Non-invasive methods of assessment of ocular blood flow. 2. Static and dynamic assessment of retinal vessel reaction to stimuli}, series = {National Journal Glaucoma}, volume = {Vol. 6}, journal = {National Journal Glaucoma}, number = {No. 2}, issn = {2078-4104}, pages = {64 -- 71}, year = {2007}, language = {ru} } @article{KotliarDrozdovaShamshinova2007, author = {Kotliar, Konstantin and Drozdova, G. A. and Shamshinova, A. M.}, title = {Ocular hemodinamics and contemporary methods of its assessment. Part III. Non-invasive methods of assessment of ocular blood flow. 1. Assessment of blood cell velocities and flow rates in intraocular vessels and vascular beds}, series = {Journal of Glaucoma}, volume = {Vol. 6}, journal = {Journal of Glaucoma}, number = {1}, issn = {2078-4104}, pages = {61 -- 68}, year = {2007}, language = {ru} } @article{KotliarDrozdovaShamshinova2006, author = {Kotliar, Konstantin and Drozdova, G. A. and Shamshinova, A. M.}, title = {Ocular hemodinamics and contemporary methods of its assessment. Part II. Invasive methods of assessment of ocular blood flow}, series = {National Journal Glaucoma}, volume = {Vol. 5}, journal = {National Journal Glaucoma}, number = {No. 4}, issn = {2078-4104}, pages = {37 -- 49}, year = {2006}, language = {ru} } @article{FrotscherKochStaat2015, author = {Frotscher, Ralf and Koch, Jan-Peter and Staat, Manfred}, title = {Computational investigation of drug action on human-induced stem cell derived cardiomyocytes}, series = {Journal of biomechanical engineering}, volume = {Vol. 137}, journal = {Journal of biomechanical engineering}, number = {iss. 7}, publisher = {ASME}, address = {New York}, issn = {1528-8951 (E-Journal); 0148-0731 (Print)}, doi = {10.1115/1.4030173}, pages = {071002-1 -- 071002-7}, year = {2015}, language = {en} } @article{DuongNguyenTranetal.2015, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Tran, Thanh Ngoc and Tolba, R. H. and Staat, Manfred}, title = {Influence of refrigerated storage on tensile mechanical properties of porcine liver and spleen}, series = {International biomechanics}, volume = {Vol. 2}, journal = {International biomechanics}, number = {Iss. 1}, publisher = {Taylor \& Francis}, address = {London}, issn = {2333-5432}, doi = {10.1080/23335432.2015.1049295}, pages = {79 -- 88}, year = {2015}, language = {en} } @article{DuongNguyenStaat2015, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Staat, Manfred}, title = {Physical response of hyperelastic models for composite materials and soft tissues}, series = {Asia pacific journal on computational engineering}, volume = {2}, journal = {Asia pacific journal on computational engineering}, number = {3 (December 2015)}, issn = {2196-1166}, doi = {10.1186/s40540-015-0015-x}, pages = {1 -- 18}, year = {2015}, language = {en} } @article{CehreliAkpinarTemizArtmannetal.2015, author = {Cehreli, Ruksan and Akpinar, Hale and Temiz Artmann, Ayseg{\"u}l and Sagol, Ozgul}, title = {Effects of Glutamine and Omega-3 Fatty Acids on Erythrocyte Deformability and Oxidative Damage in Rat Model of Enterocolitis}, series = {Gastroenterology Research}, volume = {8}, journal = {Gastroenterology Research}, number = {5}, issn = {1918-2813}, doi = {10.14740/gr683w}, pages = {265 -- 273}, year = {2015}, language = {en} } @article{KowalskiLinderZierkeetal.2016, author = {Kowalski, Julia and Linder, Peter and Zierke, S. and Wulfen, B. van and Clemens, J. and Konstantinidis, K. and Ameres, G. and Hoffmann, R. and Mikucki, J. and Tulaczyk, S. and Funke, O. and Blandfort, D. and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecker, S. and Plescher, Engelbert and Sch{\"o}ngarth, Sarah and Dachwald, Bernd and Digel, Ilya and Artmann, Gerhard and Eliseev, D. and Heinen, D. and Scholz, F. and Wiebusch, C. and Macht, S. and Bestmann, U. and Reineking, T. and Zetzsche, C. and Schill, K. and F{\"o}rstner, R. and Niedermeier, H. and Szumski, A. and Eissfeller, B. and Naumann, U. and Helbing, K.}, title = {Navigation technology for exploration of glacier ice with maneuverable melting probes}, series = {Cold Regions Science and Technology}, journal = {Cold Regions Science and Technology}, number = {123}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-232X}, doi = {10.1016/j.coldregions.2015.11.006}, pages = {53 -- 70}, year = {2016}, abstract = {The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept.}, language = {en} } @article{GrundmannDachwaldGrimmetal.2015, author = {Grundmann, Jan Thimo and Dachwald, Bernd and Grimm, Christian D. and Kahle, Ralph and Koch, Aaron Dexter and Krause, Christian and Lange, Caroline and Quantius, Dominik and Ulamec, Stephan}, title = {Spacecraft for Hypervelocity Impact Research - An Overview of Capabilities, Constraints and the Challenges of Getting There}, series = {Procedia Engineering}, volume = {Vol. 103}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.04.021}, pages = {151 -- 158}, year = {2015}, language = {en} } @article{GossmannFrotscherLinderetal.2016, author = {Goßmann, Matthias and Frotscher, Ralf and Linder, Peter and Bayer, Robin and Epple, U. and Staat, Manfred and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {Mechano-pharmacological characterization of cardiomyocytes derived from human induced pluripotent stem cells}, series = {Cellular physiology and biochemistry}, volume = {38}, journal = {Cellular physiology and biochemistry}, number = {3}, publisher = {Karger}, address = {Basel}, issn = {1421-9778 (Online)}, doi = {10.1159/000443124}, pages = {1182 -- 1198}, year = {2016}, abstract = {Background/Aims: Common systems for the quantification of cellular contraction rely on animal-based models, complex experimental setups or indirect approaches. The herein presented CellDrum technology for testing mechanical tension of cellular monolayers and thin tissue constructs has the potential to scale-up mechanical testing towards medium-throughput analyses. Using hiPS-Cardiac Myocytes (hiPS-CMs) it represents a new perspective of drug testing and brings us closer to personalized drug medication. Methods: In the present study, monolayers of self-beating hiPS-CMs were grown on ultra-thin circular silicone membranes and deflect under the weight of the culture medium. Rhythmic contractions of the hiPS-CMs induced variations of the membrane deflection. The recorded contraction-relaxation-cycles were analyzed with respect to their amplitudes, durations, time integrals and frequencies. Besides unstimulated force and tensile stress, we investigated the effects of agonists and antagonists acting on Ca²⁺ channels (S-Bay K8644/verapamil) and Na⁺ channels (veratridine/lidocaine). Results: The measured data and simulations for pharmacologically unstimulated contraction resembled findings in native human heart tissue, while the pharmacological dose-response curves were highly accurate and consistent with reference data. Conclusion: We conclude that the combination of the CellDrum with hiPS-CMs offers a fast, facile and precise system for pharmacological, toxicological studies and offers new preclinical basic research potential.}, language = {en} } @article{FrotscherMuanghongDursunetal.2016, author = {Frotscher, Ralf and Muanghong, Danita and Dursun, G{\"o}zde and Goßmann, Matthias and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Sample-specific adaption of an improved electro-mechanical model of in vitro cardiac tissue}, series = {Journal of Biomechanics}, volume = {49}, journal = {Journal of Biomechanics}, number = {12}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290 (Print)}, doi = {10.1016/j.jbiomech.2016.01.039}, pages = {2428 -- 2435}, year = {2016}, abstract = {We present an electromechanically coupled computational model for the investigation of a thin cardiac tissue construct consisting of human-induced pluripotent stem cell-derived atrial, ventricular and sinoatrial cardiomyocytes. The mechanical and electrophysiological parts of the finite element model, as well as their coupling are explained in detail. The model is implemented in the open source finite element code Code_Aster and is employed for the simulation of a thin circular membrane deflected by a monolayer of autonomously beating, circular, thin cardiac tissue. Two cardio-active drugs, S-Bay K8644 and veratridine, are applied in experiments and simulations and are investigated with respect to their chronotropic effects on the tissue. These results demonstrate the potential of coupled micro- and macroscopic electromechanical models of cardiac tissue to be adapted to experimental results at the cellular level. Further model improvements are discussed taking into account experimentally measurable quantities that can easily be extracted from the obtained experimental results. The goal is to estimate the potential to adapt the presented model to sample specific cell cultures.}, language = {en} } @article{HauserKotliarTholenetal.2015, author = {Hauser, C. and Kotliar, Konstantin and Tholen, S. and Hasenau, A. and Suttmann, Y. and Renders, L. and Heemann, U. and Baumann, M. and Schmaderer, C.}, title = {Dynamische retinale Gef{\"a}ßreaktion bei H{\"a}modialysepatienten}, series = {Nieren- und Hochdruckkrankheiten}, volume = {44}, journal = {Nieren- und Hochdruckkrankheiten}, number = {11}, publisher = {Dustri-Verlag}, address = {Oberhaching}, issn = {0300-5224}, doi = {10.5414/NHX01743a}, pages = {480 -- 480}, year = {2015}, language = {de} }