@inproceedings{GoettenFingerHavermannetal.2020, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Full Configuration Drag Estimation of Small-to-Medium Range UAVs and its Impact on Initial Sizing Optimization}, series = {CEAS Aeronautical Journal}, volume = {12}, booktitle = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590}, doi = {10.1007/s13272-021-00522-w}, pages = {589 -- 603}, year = {2020}, abstract = {The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used on surveillance, reconnaissance, and search and rescue missions. The aircraft are simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV's parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft's total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft.}, language = {en} } @inproceedings{SildatkeKarwanniKraftetal.2020, author = {Sildatke, Michael and Karwanni, Hendrik and Kraft, Bodo and Schmidts, Oliver and Z{\"u}ndorf, Albert}, title = {Automated Software Quality Monitoring in Research Collaboration Projects}, series = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, booktitle = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1145/3387940.3391478}, pages = {603 -- 610}, year = {2020}, abstract = {In collaborative research projects, both researchers and practitioners work together solving business-critical challenges. These projects often deal with ETL processes, in which humans extract information from non-machine-readable documents by hand. AI-based machine learning models can help to solve this problem. Since machine learning approaches are not deterministic, their quality of output may decrease over time. This fact leads to an overall quality loss of the application which embeds machine learning models. Hence, the software qualities in development and production may differ. Machine learning models are black boxes. That makes practitioners skeptical and increases the inhibition threshold for early productive use of research prototypes. Continuous monitoring of software quality in production offers an early response capability on quality loss and encourages the use of machine learning approaches. Furthermore, experts have to ensure that they integrate possible new inputs into the model training as quickly as possible. In this paper, we introduce an architecture pattern with a reference implementation that extends the concept of Metrics Driven Research Collaboration with an automated software quality monitoring in productive use and a possibility to auto-generate new test data coming from processed documents in production. Through automated monitoring of the software quality and auto-generated test data, this approach ensures that the software quality meets and keeps requested thresholds in productive use, even during further continuous deployment and changing input data.}, language = {en} } @book{YoshinobuSchoening2020, author = {Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Light-addressing and chemical imaging technologies for electrochemical sensing}, editor = {Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, publisher = {MDPI}, address = {Basel}, isbn = {978-3-03943-029-1}, doi = {10.3390/books978-3-03943-029-1}, pages = {122 Pages}, year = {2020}, language = {en} } @inproceedings{IomdinaKiselevaKotliaretal.2020, author = {Iomdina, Elena N. and Kiseleva, Anna A. and Kotliar, Konstantin and Luzhnov, Petr V.}, title = {Quantification of Choroidal Blood Flow Using the OCT-A System Based on Voxel Scan Processing}, series = {Proceedings of the International Conference on Biomedical Innovations and Applications- BIA 2020}, booktitle = {Proceedings of the International Conference on Biomedical Innovations and Applications- BIA 2020}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-7281-7073-2}, doi = {10.1109/BIA50171.2020.9244511}, pages = {41 -- 44}, year = {2020}, abstract = {The paper presents a method for the quantitative assessment of choroidal blood flow using an OCT-A system. The developed technique for processing of OCT-A scans is divided into two stages. At the first stage, the identification of the boundaries in the selected portion was performed. At the second stage, each pixel mark on the selected layer was represented as a volume unit, a voxel, which characterizes the region of moving blood. Three geometric shapes were considered to represent the voxel. On the example of one OCT-A scan, this work presents a quantitative assessment of the blood flow index. A possible modification of two-stage algorithm based on voxel scan processing is presented.}, language = {en} } @inproceedings{FrantzBinderBuschetal.2020, author = {Frantz, Cathy and Binder, Matthias and Busch, Konrad and Ebert, Miriam and Heinrich, Andreas and Kaczmarkiewicz, Nadine and Schl{\"o}gl-Knothe, B{\"a}rbel and Kunze, Tobias and Schuhbauer, Christian and Stetka, Markus and Schwager, Christian and Spiegel, Michael and Teixeira Boura, Cristiano Jos{\´e} and Bauer, Thomas and Bonk, Alexander and Eisen, Stefan and Funck, Bernhard}, title = {Basic Engineering of a High Performance Molten Salt Tower Receiver System}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, doi = {10.1063/5.0085895}, pages = {1 -- 10}, year = {2020}, abstract = {The production of dispatchable renewable energy will be one of the most important key factors of the future energy supply. Concentrated solar power (CSP) plants operated with molten salt as heat transfer and storage media are one opportunity to meet this challenge. Due to the high concentration factor of the solar tower technology the maximum process temperature can be further increased which ultimately decreases the levelized costs of electricity of the technology (LCOE). The development of an improved tubular molten salt receiver for the next generation of molten salt solar tower plants is the aim of this work. The receiver is designed for a receiver outlet temperature up to 600 °C. Together with a complete molten salt system, the receiver will be integrated into the Multi-Focus-Tower (MFT) in J{\"u}lich (Germany). The paper describes the basic engineering of the receiver, the molten salt tower system and a laboratory corrosion setup.}, language = {en} } @article{Stulpe2020, author = {Stulpe, Werner}, title = {Pairwise coexistence of effects versus coexistence}, series = {Journal of Physics: Conference Series}, volume = {1638}, journal = {Journal of Physics: Conference Series}, number = {012004}, publisher = {IOP}, address = {Bristol}, issn = {1742-6596}, doi = {10.1088/1742-6596/1638/1/012004}, pages = {1 -- 21}, year = {2020}, language = {en} } @inproceedings{MarinkovicButenweg2020, author = {Marinkovic, Marko and Butenweg, Christoph}, title = {Seismic behaviour of RC frames with uncoupled masonry infills having two storeys or two bays}, series = {Brick and Block Masonry - From Historical to Sustainable Masonry. Proceedings of the 17th International Brick/Block Masonry Conference}, booktitle = {Brick and Block Masonry - From Historical to Sustainable Masonry. Proceedings of the 17th International Brick/Block Masonry Conference}, publisher = {CRC Press}, address = {London}, doi = {10.1201/9781003098508-72}, pages = {1 -- 7}, year = {2020}, abstract = {Reinforced concrete (RC) structures with masonry infills are widely used for several types of buildings all over the world. However, it is well known that traditional masonry infills constructed with rigid contact to the surrounding RC frame performed rather poor in past earthquakes. Masonry infills showed severe in-plane damages and failed in many cases under out-of-plane seismic loading. As the undesired interactions between frames and infills changes the load transfer on building level, complete collapses of buildings were observed. A possible solution is uncoupling of masonry infills to the frame to reduce the infill contribution activated by the frame deformation under horizontal loading. The paper presents numerical simulations on RC frames equipped with the innovative decoupling system INODIS. The system was developed within the European project INSYSME and allows an effective uncoupling of frame and infill. The simulations are carried out with a micro-modelling approach, which is able to predict the complex nonlinear behaviour resulting from the different materials and their interaction. Each brick is modelled individually and connected taking into account nonlinearity of a brick mortar interface. The calibration of the model is based on small specimen tests and experimental results for one bay one storey frame are used for the validation. The validated model is further used for parametric studies on two storey and two bay infilled frames. The response and change of the structural stiffness are analysed and compared to the traditionally infilled frame. The results confirm the effectiveness of the INODIS system with less damage and relatively low contribution of the infill at high drift levels. In contrast to the uncoupled system configurations, traditionally infilled frames experienced brittle failure at rather low drift levels.}, language = {en} } @book{ButenwegHoffmeisterHoltschoppenetal.2020, author = {Butenweg, Christoph and Hoffmeister, Benno and Holtschoppen, Britta and Klinkel, Sven and Rosin, Julia and Schmitt, Timo}, title = {Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference)}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-86359-729-0}, pages = {524 Seiten}, year = {2020}, language = {en} } @inproceedings{MarkinkovicButenwegPaveseetal.2020, author = {Markinkovic, Marko and Butenweg, Christoph and Pavese, A. and Lanese, I. and Hoffmeister, B. and Pinkawa, M. and Vulcu, C. and Bursi, O. and Nardin, C. and Paolacci, F. and Quinci, G. and Fragiadakis, M. and Weber, F. and Huber, P. and Renault, P. and G{\"u}ndel, M. and Dyke, S. and Ciucci, M. and Marino, A.}, title = {Investigation of the seismic behaviour of structural and nonstructural components in industrial facilities by means of shaking table tests}, series = {Seismic design of industrial facilities 2020}, booktitle = {Seismic design of industrial facilities 2020}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-86359-729-0}, pages = {159 -- 172}, year = {2020}, language = {en} } @inproceedings{CacciatoreButenweg2020, author = {Cacciatore, Pamela and Butenweg, Christoph}, title = {Seismic safety of cylindrical granular material steel silos under seismic loading}, series = {Seismic design of industrial facilities 2020}, booktitle = {Seismic design of industrial facilities 2020}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-86359-729-0}, pages = {231 -- 244}, year = {2020}, language = {en} } @inproceedings{MichelRosinButenwegetal.2020, author = {Michel, Philipp and Rosin, Julia and Butenweg, Christoph and Klinkel, Sven}, title = {Soil-dependent earthquake spectra in the analysis of liquid-storage-tanks on compliant soil}, series = {Seismic design of industrial facilities 2020}, booktitle = {Seismic design of industrial facilities 2020}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-86359-729-0}, pages = {245 -- 254}, year = {2020}, abstract = {A further development of the Added-Mass-Method allows the combined representation of the effects of both soil-structure-interaction and fluid-structure interaction on a liquid-filled-tank in one model. This results in a practical method for describing the dynamic fluid pressure on the tank shell during joint movement. The fluid pressure is calculated on the basis of the tank's eigenform and the earthquake acceleration and represented by additional masses on the shell. The bearing on compliant ground is represented by replacement springs, which are calculated dependent on the local soil composition. The influence of the shear modulus of the compliant soil is clearly visible in the pressure curves and the stress distribution in the shell. The acceleration spectra are also dependent on soil stiffness. According to Eurocode-8 the acceleration spectra are determined for fixed soil-classes, instead of calculating the accelerations for each site in direct dependence on the soil composition. This leads to unrealistic sudden changes in the system's response. Therefore, earthquake spectra are calculated for different soil models in direct dependence of the shear modulus. Thus, both the acceleration spectra and the replacement springs match the soil composition. This enables a reasonable and consistent calculation of the system response for the actual conditions at each site.}, language = {en} } @article{HueningBackes2020, author = {H{\"u}ning, Felix and Backes, Andreas}, title = {Direct observation of large Barkhausen jump in thin Vicalloy wires}, series = {IEEE Magnetics Letters}, volume = {11}, journal = {IEEE Magnetics Letters}, number = {Art. 2506504}, publisher = {IEEE}, address = {New York, NY}, isbn = {1949-307X}, doi = {10.1109/LMAG.2020.3046411}, pages = {1 -- 4}, year = {2020}, language = {en} } @article{GazdaMaurischat2020, author = {Gazda, Quentin and Maurischat, Andreas}, title = {Special functions and Gauss-Thakur sums in higher rank and dimension}, publisher = {De Gruyter}, address = {Berlin}, pages = {26 Seiten}, year = {2020}, language = {en} } @inproceedings{ChavezBermudezWollert2020, author = {Chavez Bermudez, Victor Francisco and Wollert, J{\"o}rg}, title = {Arduino based Framework for Rapid Application Development of a Generic IO-Link interface}, series = {Kommunikation und Bildverarbeitung in der Automation. Ausgew{\"a}hlte Beitr{\"a}ge der Jahreskolloquien KommA und BVAu 2018}, booktitle = {Kommunikation und Bildverarbeitung in der Automation. Ausgew{\"a}hlte Beitr{\"a}ge der Jahreskolloquien KommA und BVAu 2018}, publisher = {Springer Vieweg}, address = {Berlin}, isbn = {978-3-662-59895-5}, doi = {10.1007/978-3-662-59895-5_2}, pages = {21 -- 33}, year = {2020}, abstract = {The implementation of IO-Link in the automation industry has increased over the years. Its main advantage is it offers a digital point-to-point plugand-play interface for any type of device or application. This simplifies the communication between devices and increases productivity with its different features like self-parametrization and maintenance. However, its complete potential is not always used. The aim of this paper is to create an Arduino based framework for the development of generic IO-Link devices and increase its implementation for rapid prototyping. By generating the IO device description file (IODD) from a graphical user interface, and further customizable options for the device application, the end-user can intuitively develop generic IO-Link devices. The peculiarity of this framework relies on its simplicity and abstraction which allows to implement any sensor functionality and virtually connect any type of device to an IO-Link master. This work consists of the general overview of the framework, the technical background of its development and a proof of concept which demonstrates the workflow for its implementation.}, language = {en} } @inproceedings{KaschSchmidtEichleretal.2020, author = {Kasch, Susanne and Schmidt, Thomas and Eichler, Fabian and Thurn, Laura and Jahn, Simon and Bremen, Sebastian}, title = {Solution approaches and process concepts for powder bed-based melting of glass}, series = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, booktitle = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-54333-4 (Print)}, doi = {10.1007/978-3-030-54334-1_7}, pages = {82 -- 95}, year = {2020}, abstract = {In the study, the process chain of additive manufacturing by means of powder bed fusion will be presented based on the material glass. In order to reliably process components additively, new concepts with different solutions were developed and investigated. Compared to established metallic materials, the properties of glass materials differ significantly. Therefore, the process control was adapted to the material glass in the investigations. With extensive parameter studies based on various glass powders such as borosilicate glass and quartz glass, scientifically proven results on powder bed fusion of glass are presented. Based on the determination of the particle properties with different methods, extensive investigations are made regarding the melting behavior of glass by means of laser beams. Furthermore, the experimental setup was steadily expanded. In addition to the integration of coaxial temperature measurement and regulation, preheating of the building platform is of major importance. This offers the possibility to perform 3D printing at the transformation temperatures of the glass materials. To improve the component's properties, the influence of a subsequent heat treatment was also investigated. The experience gained was incorporated into a new experimental system, which allows a much better exploration of the 3D printing of glass. Currently, studies are being conducted to improve surface texture, building accuracy, and geometrical capabilities using three-dimensional specimen. The contribution shows the development of research in the field of 3D printing of glass, gives an insight into the machine and process engineering as well as an outlook on the possibilities and applications.}, language = {en} } @inproceedings{AdamsLosekammCzupalla2020, author = {Adams, Moritz and Losekamm, Martin J. and Czupalla, Markus}, title = {Development of the Thermal Control System for the RadMap Telescope Experiment on the International Space Station}, series = {International Conference on Environmental Systems}, booktitle = {International Conference on Environmental Systems}, pages = {1 -- 10}, year = {2020}, language = {en} } @inproceedings{ThomaFisherBertrandetal.2020, author = {Thoma, Andreas and Fisher, Alex and Bertrand, Olivier and Braun, Carsten}, title = {Evaluation of possible flight strategies for close object evasion from bumblebee experiments}, series = {Living Machines 2020: Biomimetic and Biohybrid Systems}, booktitle = {Living Machines 2020: Biomimetic and Biohybrid Systems}, editor = {Vouloutsi, Vasiliki and Mura, Anna and Tauber, Falk and Speck, Thomas and Prescott, Tony J. and Verschure, Paul F. M. J.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64312-6}, doi = {10.1007/978-3-030-64313-3_34}, pages = {354 -- 365}, year = {2020}, language = {en} } @inproceedings{ThomaFisherBraun2020, author = {Thoma, Andreas and Fisher, Alex and Braun, Carsten}, title = {Improving the px4 avoid algorithm by bio-inspired flight strategies}, series = {DLRK2020 - „Luft- und Raumfahrt - Verantwortung in allen Dimensionen"}, booktitle = {DLRK2020 - „Luft- und Raumfahrt - Verantwortung in allen Dimensionen"}, doi = {10.25967/530183}, pages = {10 Seiten}, year = {2020}, language = {en} } @article{QuittmannAbelAlbrachtetal.2020, author = {Quittmann, Oliver J. and Abel, Thomas and Albracht, Kirsten and Meskemper, Joshua and Foitschik, Tina and Str{\"u}der, Heiko K.}, title = {Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants}, series = {European Journal of Applied Physiology}, journal = {European Journal of Applied Physiology}, number = {120}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-6327}, doi = {10.1007/s00421-020-04373-x}, pages = {1403 -- 1415}, year = {2020}, abstract = {Purpose This study aims to investigate the biomechanics of handcycling during a continuous load trial (CLT) to assess the mechanisms underlying fatigue in upper body exercise. Methods Twelve able-bodied triathletes performed a 30-min CLT at a power output corresponding to lactate threshold in a racing recumbent handcycle mounted on a stationary ergometer. During the CLT, ratings of perceived exertion (RPE), tangential crank kinetics, 3D joint kinematics, and muscular activity of ten muscles of the upper extremity and trunk were examined using motion capturing and surface electromyography. Results During the CLT, spontaneously chosen cadence and RPE increased, whereas crank torque decreased. Rotational work was higher during the pull phase. Peripheral RPE was higher compared to central RPE. Joint range of motion decreased for elbow-flexion and radial-duction. Integrated EMG (iEMG) increased in the forearm flexors, forearm extensors, and M. deltoideus (Pars spinalis). An earlier onset of activation was found for M. deltoideus (Pars clavicularis), M. pectoralis major, M. rectus abdominis, M. biceps brachii, and the forearm flexors. Conclusion Fatigue-related alterations seem to apply analogously in handcycling and cycling. The most distal muscles are responsible for force transmission on the cranks and might thus suffer most from neuromuscular fatigue. The findings indicate that peripheral fatigue (at similar lactate values) is higher in handcycling compared to leg cycling, at least for inexperienced participants. An increase in cadence might delay peripheral fatigue by a reduced vascular occlusion. We assume that the gap between peripheral and central fatigue can be reduced by sport-specific endurance training.}, language = {en} } @inproceedings{PohleFroehlichDalitzRichteretal.2020, author = {Pohle-Fr{\"o}hlich, Regina and Dalitz, Christoph and Richter, Charlotte and Hahnen, Tobias and St{\"a}udle, Benjamin and Albracht, Kirsten}, title = {Estimation of muscle fascicle orientation in ultrasonic images}, series = {Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5}, booktitle = {Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5}, publisher = {SciTePress}, address = {Set{\´u}bal, Portugal}, isbn = {978-989-758-402-2}, doi = {10.5220/0008933900790086}, pages = {79 -- 86}, year = {2020}, abstract = {We compare four different algorithms for automatically estimating the muscle fascicle angle from ultrasonic images: the vesselness filter, the Radon transform, the projection profile method and the gray level cooccurence matrix (GLCM). The algorithm results are compared to ground truth data generated by three different experts on 425 image frames from two videos recorded during different types of motion. The best agreement with the ground truth data was achieved by a combination of pre-processing with a vesselness filter and measuring the angle with the projection profile method. The robustness of the estimation is increased by applying the algorithms to subregions with high gradients and performing a LOESS fit through these estimates.}, language = {en} }