@article{SchusserPoghossianBaeckeretal.2012, author = {Schusser, Sebastian and Poghossian, Arshak and B{\"a}cker, Matthias and Leinhos, Marcel and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Characterization of biodegradable polymers with capacitive field-effect sensors}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.07.099}, pages = {2 -- 7}, year = {2012}, abstract = {In vitro studies of the degradation kinetic of biopolymers are essential for the design and optimization of implantable biomedical devices. In the presented work, a field-effect capacitive sensor has been applied for the real-time and in situ monitoring of degradation processes of biopolymers for the first time. The polymer-covered field-effect sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. The feasibility of this approach has been experimentally proven by using the commercially available biomedical polymer poly(D,L-lactic acid) (PDLLA) as a model system. PDLLA films of different thicknesses were deposited on the Ta₂O₅-gate surface of the field-effect structure from a polymer solution by means of spin-coating method. The polymer-modified field-effect sensors have been characterized by means of capacitance-voltage and impedance-spectroscopy method. The degradation of the PDLLA was accelerated by changing the degradation medium from neutral (pH 7.2) to alkaline (pH 9) condition, resulting in drastic changes in the capacitance and impedance spectra of the polymer-modified field-effect sensor.}, language = {en} } @article{SchusserKrischerMolinetal.2015, author = {Schusser, Sebastian and Krischer, M. and Molin, D. G. M. and Akker, N. M. S. van den and B{\"a}cker, Matthias and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Sensor System for in-situ and Real-time Monitoring of Polymer (bio) degradation}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.815}, pages = {948 -- 951}, year = {2015}, abstract = {A sensor system for investigating (bio)degradationprocesses of polymers is presented. The system utilizes semiconductor field-effect sensors and is capable of monitoring the degradation process in-situ and in real-time. The degradation of the polymer poly(d,l-lactic acid) is exemplarily monitored in solutions with different pH value, pH-buffer solution containing the model enzyme lipase from Rhizomucormiehei and cell-culture medium containing supernatants from stimulated and non-stimulated THP-1-derived macrophages mimicking activation of the immune system.}, language = {en} } @article{GasparyanPoghossianVitusevichetal.2009, author = {Gasparyan, F. V. and Poghossian, Arshak and Vitusevich, S. A. and Petrychuk, M. V. and Sydoruk, V. A. and Surmalyan, A. V. and Siqueira, J. R. and Oliveira, O. N. and Offenh{\"a}usser, A. and Sch{\"o}ning, Michael Josef}, title = {Low Frequency Noise In Electrolyte-Gate Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers}, series = {Noise and fluctuations : 20th International Conference on Noise and Fluctuations, ICNF 2009, Pisa, Italy, 14 - 19 June 2009 / ed. Massimo Macucci; Giovanni Basso}, journal = {Noise and fluctuations : 20th International Conference on Noise and Fluctuations, ICNF 2009, Pisa, Italy, 14 - 19 June 2009 / ed. Massimo Macucci; Giovanni Basso}, publisher = {American Inst. of Physics}, address = {Melville, NY}, isbn = {9780735406650}, pages = {133 -- 136}, year = {2009}, language = {en} } @article{BuniatyanAbouzarMartirosyanetal.2010, author = {Buniatyan, Vahe V. and Abouzar, Maryam H. and Martirosyan, Norayr W. and Schubert, J{\"u}rgen and Gevorgian, Spartak and Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {pH-sensitive properties of barium strontium titanate (BST) thin films prepared by pulsed laser deposition technique}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {824 -- 830}, year = {2010}, language = {en} } @article{PoghossianAbouzarRazavietal.2009, author = {Poghossian, Arshak and Abouzar, Maryam H. and Razavi, A. and B{\"a}cker, Matthias and Bijnens, N. and Williams, O. A. and Haenen, K. and Moritz, W. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO2 structure}, series = {Electrochimica Acta. 54 (2009), H. 25}, journal = {Electrochimica Acta. 54 (2009), H. 25}, isbn = {0013-4686}, pages = {5981 -- 5985}, year = {2009}, language = {en} } @article{GunSchoeningAbouzaretal.2008, author = {Gun, Jenny and Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Poghossian, Arshak and Katz, Evgeny}, title = {Field-Effect Nanoparticle-Based Glucose Sensor on a Chip: Amplification Effect of Coimmobilized Redox Species}, series = {Electroanalysis. 20 (2008), H. 16}, journal = {Electroanalysis. 20 (2008), H. 16}, isbn = {1521-4109}, pages = {1748 -- 1753}, year = {2008}, language = {en} } @article{PoghossianYoshinobuSimonisetal.2000, author = {Poghossian, Arshak and Yoshinobu, T. and Simonis, A. and Ecken, H. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?}, series = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, journal = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, publisher = {MIC, Mikroelektronik Centret}, address = {Lyngby, Denmark}, isbn = {87-89935-50-0}, pages = {27 -- 30}, year = {2000}, language = {en} } @article{HonarvarfardGamellaChannaveerappaetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Channaveerappa, Devika and Darie, Costel C. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {Electrochemically Stimulated Insulin Release from a Modified Graphene-functionalized Carbon Fiber Electrode}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700095}, pages = {1543 -- 1553}, year = {2017}, abstract = {A graphene-functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4-carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer-modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4-carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye-labeled insulin (insulin-FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9-10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of -1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin-FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC-labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene-functionalized carbon fiber electrode demonstrated significant advantages in the signal-stimulated insulin release comparing with the carbon fiber electrode without the graphene species.}, language = {en} } @article{MolinnusHardtKaeveretal.2018, author = {Molinnus, Denise and Hardt, G. and K{\"a}ver, L. and Willenberg, H.S. and Kr{\"o}ger, J.-C. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Chip-based biosensor for the detection of low adrenaline concentrations to support adrenal venous sampling}, series = {Sensor and Actuators B: Chemical}, volume = {272}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2018.05.136}, pages = {21 -- 27}, year = {2018}, abstract = {A chip-based amperometric biosensor referring on using the bioelectrocatalytical amplification principle for the detection of low adrenaline concentrations is presented. The adrenaline biosensor has been prepared by modification of a platinum thin-film electrode with an enzyme membrane containing the pyrroloquinoline quinone-dependent glucose dehydrogenase and glutaraldehyde. Measuring conditions such as temperature, pH value, and glucose concentration have been optimized to achieve a high sensitivity and a low detection limit of about 1 nM adrenaline measured in phosphate buffer at neutral pH value. The response of the biosensor to different catecholamines has also been proven. Long-term stability of the adrenaline biosensor has been studied over 10 days. In addition, the biosensor has been successfully applied for adrenaline detection in human blood plasma for future biomedical applications. Furthermore, preliminary experiments have been carried to detect the adrenaline-concentration difference measured in peripheral blood and adrenal venous blood, representing the adrenal vein sampling procedure of a physician.}, language = {en} } @article{PoghossianSchultzeSchoening2003, author = {Poghossian, Arshak and Schultze, J. W. and Sch{\"o}ning, Michael Josef}, title = {Application of a (bio-)chemical sensor (ISFET) for the detection of physical parameters in liquids}, series = {Electrochimica Acta. 48 (2003), H. 20-22}, journal = {Electrochimica Acta. 48 (2003), H. 20-22}, pages = {3289 -- 3297}, year = {2003}, language = {en} } @article{BaeckerDellePoghossianetal.2011, author = {B{\"a}cker, Matthias and Delle, L. and Poghossian, Arshak and Biselli, Manfred and Zang, Werner and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Electrochemical sensor array for bioprocess monitoring}, series = {Electrochimica Acta (2011)}, volume = {56}, journal = {Electrochimica Acta (2011)}, number = {26}, publisher = {Elsevier}, address = {Amsterdam}, pages = {9673 -- 9678}, year = {2011}, language = {en} } @article{SchoeningNaetherAugeretal.2004, author = {Sch{\"o}ning, Michael Josef and N{\"a}ther, Niko and Auger, V. and Poghossian, Arshak and Koudelka-Hep, M.}, title = {Miniaturized flow-through cell with integrated capacitive EIS sensors fabricated at wafer level using Si and Su-8 technologies}, series = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, journal = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, publisher = {Japan Association of Chemical Sensors}, address = {Fukuoka}, pages = {554 -- 555}, year = {2004}, language = {en} } @article{BegingPoghossianSchoeningetal.2008, author = {Beging, Stefan and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Hataihimakul, Sudkanung and Busch, H. and Baldsiefen, G. and Laube, N. and Kleinen, L. and Hosseiny, R.}, title = {Feldeffektbasierender Ca2+-sensitiver Sensor f{\"u}r den Einsatz im Nativurin zur Bestimmung des Harnsteinbildungsrisikos}, series = {Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. M{\"a}rz 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, journal = {Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. M{\"a}rz 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092011-5}, pages = {775 -- 782}, year = {2008}, language = {de} } @article{MourzinaMaiPoghossianetal.2003, author = {Mourzina, Y. and Mai, T. and Poghossian, Arshak and Ermolenko, Y. and Yoshinobu, T. and Vlasov, Y. and Iwasaki, H. and Sch{\"o}ning, Michael Josef}, title = {K+-selective field-effect sensors as transducers for bioelectronic applications}, series = {Electrochimica Acta. 48 (2003), H. 20-22}, journal = {Electrochimica Acta. 48 (2003), H. 20-22}, isbn = {0013-4686}, pages = {3333 -- 3339}, year = {2003}, language = {en} } @article{PoghossianPlatenSchoening2005, author = {Poghossian, Arshak and Platen, J. and Sch{\"o}ning, Michael Josef}, title = {Towards self-aligned nanostructures by means of layerexpansion technique}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, pages = {838 -- 843}, year = {2005}, language = {en} } @article{BronderPoghossianSchejaetal.2015, author = {Bronder, Thomas and Poghossian, Arshak and Scheja, Sabrina and Wu, Chunsheng and Keusgen, Michael and Mewes, Dieter and Sch{\"o}ning, Michael Josef}, title = {DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer}, series = {Applied Materials \& Interfaces}, volume = {36}, journal = {Applied Materials \& Interfaces}, number = {7}, publisher = {American Chemical Society}, address = {Washington, DC}, doi = {10.1021/acsami.5b05146}, pages = {20068 -- 20075}, year = {2015}, abstract = {Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.}, language = {en} } @article{BaeckerRaueSchusseretal.2012, author = {B{\"a}cker, Matthias and Raue, Markus and Schusser, Sebastian and Jeitner, C. and Breuer, L. and Wagner, P. and Poghossian, Arshak and F{\"o}rster, Arnold and Mang, Thomas and Sch{\"o}ning, Michael Josef}, title = {Microfluidic chip with integrated microvalves based on temperature- and pH-responsive hydrogel thin films}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100763}, pages = {839 -- 845}, year = {2012}, abstract = {Two types of microvalves based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and pH-responsive poly(sodium acrylate) (PSA) hydrogel films have been developed and tested. The PNIPAAm and PSA hydrogel films were prepared by means of in situ photopolymerization directly inside the fluidic channel of a microfluidic chip fabricated by combining Si and SU-8 technologies. The swelling/shrinking properties and height changes of the PNIPAAm and PSA films inside the fluidic channel were studied at temperatures of deionized water from 14 to 36 °C and different pH values (pH 3-12) of Titrisol buffer, respectively. Additionally, in separate experiments, the lower critical solution temperature (LCST) of the PNIPAAm hydrogel was investigated by means of a differential scanning calorimetry (DSC) and a surface plasmon resonance (SPR) method. Mass-flow measurements have shown the feasibility of the prepared hydrogel films to work as an on-chip integrated temperature- or pH-responsive microvalve capable to switch the flow channel on/off.}, language = {en} } @article{BronderPoghossianKeusgenetal.2017, author = {Bronder, Thomas and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Label-free detection of double-stranded DNA molecules with polyelectrolyte-modified capacitive field-effect sensors}, series = {tm - Technisches Messen}, volume = {84}, journal = {tm - Technisches Messen}, number = {10}, publisher = {De Gruyter}, address = {Oldenbourg}, doi = {10.1515/teme-2017-0015}, pages = {628 -- 634}, year = {2017}, abstract = {In this study, polyelectrolyte-modified field-effect-based electrolyte-insulator-semiconductor (EIS) devices have been used for the label-free electrical detection of double-stranded deoxyribonucleic acid (dsDNA)molecules. The sensor-chip functionalization with a positively charged polyelectrolyte layer provides the possibility of direct adsorptive binding of negatively charged target DNA oligonucleotides onto theSiO2-chip surface.EIS sensors can be utilized as a tool to detect surface-charge changes; the electrostatic adsorption of oligonucleotides onto the polyelectrolyte layer leads to a measureable surface-potential change. Signals of 39mV have been recorded after the incubation with the oligonucleotide solution. Besides the electrochemical experiments, the successful adsorption of dsDNA onto the polyelectrolyte layer has been verified via fluorescence microscopy. The presented results demonstrate that the signal recording of EISchips, which are modified with a polyelectrolyte layer, canbe used as a favorable approach for a fast, cheap and simple detection method for dsDNA.}, language = {en} } @article{JablonskiPoghossianSeverinetal.2021, author = {Jablonski, Melanie and Poghossian, Arshak and Severin, Robin and Keusgen, Michael and Wege, Christian and Sch{\"o}ning, Michael Josef}, title = {Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles}, series = {Micromachines}, volume = {12}, journal = {Micromachines}, number = {1}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/mi12010057}, pages = {Artikel 57}, year = {2021}, abstract = {Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta₂O₅-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta₂O₅-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles.}, language = {en} } @article{SchoeningAbouzarPoghossian2009, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Poghossian, Arshak}, title = {pH and ion sensitivity of a field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with polyelectrolyte multilayers}, series = {Journal of Solid State Electrochemistry. 13 (2009), H. 1}, journal = {Journal of Solid State Electrochemistry. 13 (2009), H. 1}, isbn = {1433-0768}, pages = {115 -- 122}, year = {2009}, language = {en} }