@incollection{SavitskayaKistaubayevaAkimbekovetal.2020, author = {Savitskaya, Irina S. and Kistaubayeva, Aida S. and Akimbekov, Nuraly S. and Digel, Ilya and Shokatayeva, Dina and Zhubanova, Azhar Achmet}, title = {Prospective Use of Probiotics Immobilized on Sorbents with Nanostructured Surfaces}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-12}, pages = {229 -- 267}, year = {2020}, abstract = {Activated carbons are known as excellent adsorbents. Their applications include the adsorptive removal of color, odor, taste, undesirable organic and inorganic pollutants from drinking and waste water; air purification in inhabited spaces; purification of many chemicals, pharmaceutical products and many others. This chapter elucidates the role of normal microflora in the maintenance of human health and presents materials on possible clinical displays of microecological infringements and ways of their correction. It presents new developments concerning new probiotics with immobilized Lactobacillus and Bacillus. The chapter considers the mechanisms of the intestine disbacteriosis correction by sorbed probiotics. It demonstrates the advantages and creation prospects of immobilized probiotics developed on the basis of carbonized rice husk. There are great prospects for the development of medical biotechnology due to use of carbon sorbents with a nanostructured surface. Microbial communities form a biocenosis of the biotope and together with the host organism create permanent or temporary ecosystems.}, language = {en} } @incollection{Dachwald2010, author = {Dachwald, Bernd}, title = {Solar sail dynamics and control}, series = {Encyclopedia of Aerospace Engineering}, booktitle = {Encyclopedia of Aerospace Engineering}, publisher = {Wiley}, address = {Hoboken}, doi = {10.1002/9780470686652.eae292}, year = {2010}, abstract = {Solar sails are large and lightweight reflective structures that are propelled by solar radiation pressure. This chapter covers their orbital and attitude dynamics and control. First, the advantages and limitations of solar sails are discussed and their history and development status is outlined. Because the dynamics of solar sails is governed by the (thermo-)optical properties of the sail film, the basic solar radiation pressure force models have to be described and compared before parameters to measure solar sail performance can be defined. The next part covers the orbital dynamics of solar sails for heliocentric motion, planetocentric motion, and motion at Lagrangian equilibrium points. Afterwards, some advanced solar radiation pressure force models are described, which allow to quantify the thrust force on solar sails of arbitrary shape, the effects of temperature, of light incidence angle, of surface roughness, and the effects of optical degradation of the sail film in the space environment. The orbital motion of a solar sail is strongly coupled to its rotational motion, so that the attitude control of these soft and flexible structures is very challenging, especially for planetocentric orbits that require fast attitude maneuvers. Finally, some potential attitude control methods are sketched and selection criteria are given.}, language = {en} } @incollection{ZhubanovaMansurovDigel2020, author = {Zhubanova, Azhar A. and Mansurov, Zulkhair A. and Digel, Ilya}, title = {Use of Advanced Nanomaterials for Bioremediation of Contaminated Ecosystems}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4800-27-3}, doi = {10.1201/9780429428647-18}, pages = {353 -- 378}, year = {2020}, abstract = {This chapter shows that nanomaterials obtained by high-temperature carbonization of inexpensive plant raw material such as rice husk, grape seeds, and walnut shells can serve as a basis for the production of highly efficient microbial drugs, biodestructors, biosorbents, and biocatalysts, which are promising for the remediation of the ecosystem contaminated with heavy and radioactive metals, oil and oil products. A strong interest in engineering zymology is dictated by the necessity to address the issues of monitoring enzymatic processes, treatment, and diagnosis of a number of common human diseases, environmental pollution, quality control of pharmaceuticals and food. Nanomaterials obtained by high-temperature carbonization of cheap plant raw material such as-rice husks, grape seeds and walnut shells, can serve as a basis for creating of highly effective microbial preparations-biodestructors, biosorbents and biocatalysts, which are promising for the use of contaminated ecosystems, and for restoration of human intestine microecology.}, language = {en} } @incollection{AkimbekovDigelRazzaque2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Razzaque, Mohammed S.}, title = {Role of vitamins in maintaining structure and function of intestinal microbiome}, series = {Comprehensive Gut Microbiota}, booktitle = {Comprehensive Gut Microbiota}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-822036-8}, doi = {10.1016/B978-0-12-819265-8.00043-7}, pages = {320 -- 334}, year = {2022}, abstract = {The recent advances in microbiology have shed light on understanding the role of vitamins beyond the nutritional range. Vitamins are critical in contributing to healthy biodiversity and maintaining the proper function of gut microbiota. The sharing of vitamins among bacterial populations promotes stability in community composition and diversity; however, this balance becomes disturbed in various pathologies. Here, we overview and analyze the ability of different vitamins to selectively and specifically induce changes in the intestinal microbial community. Some schemes and regularities become visible, which may provide new insights and avenues for therapeutic management and functional optimization of the gut microbiota.}, language = {en} } @article{ZhubanovaAknazarovMansurovetal.2010, author = {Zhubanova, Azhar A. and Aknazarov, S. K. and Mansurov, Zulkhair and Digel, Ilya and Kozhalakova, A. A. and Akimbekov, Nuraly S. and O'Heras, Carlos and Tazhibayeva, S. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Adsorption of bacterial Lipopolysaccharides and blood plasma proteins on modified carbonized materials}, year = {2010}, abstract = {Bacterial lipopolysaccharides (endotoxins) show strong biological effects at very low concentrations in human beings and many animals when entering the blood stream. These include affecting structure and function of organs and cells, changing metabolic functions, raising body temperature, triggering the coagulation cascade, modifying hemodynamics and causing septic shock. Because of this toxicity, the removal of even minute amounts is essential for safe parenteral administration of drugs and also for septic shock patients' care. The absence of a general method for endotoxin removal from liquid interfaces urgently requires finding new methods and materials to overcome this gap. Nanostructured carbonized plant parts is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study was comparative measurement of endotoxin- and blood proteins-related adsorption rate and adsorption capacity for different carboneous materials produced at different temperatures and under different surface modifications. As a main surface modificator, positively cbarged polymer, polyethileneimine (PEl) was used. Activated carbon materials showed good adsorption properties for LPS and some proteins used in the experiments. During the batch experiments, several techniques (dust removal, autoclaving) were used and optimized for improving the material's adsorption behavior. Also, with the results obtained it was possible to differentiate the materials according to their adsorption capacity and kinetic characteristics. Modification of the surface apparently has not affected hemoglobin binding to the adsorbent's surface. Obtained adsorption isotherms can be used as a powerful tool for designing of future column-based setups for blood purification from LPS, which is especially important for septic shock treatment.}, subject = {Kohlenstofffaser}, language = {en} } @article{StadlerGarveyBocahutetal.2012, author = {Stadler, Andreas M. and Garvey, G. J. and Bocahut, A. and Sacquin-Mora, S. and Digel, Ilya and Schneider, G. J. and Natali, F. and Artmann, Gerhard and Zaccai, G.}, title = {Thermal fluctuations of haemoglobin from different species : adaptation to temperature via conformational dynamics}, series = {Journal of the Royal Society Interface}, volume = {9}, journal = {Journal of the Royal Society Interface}, number = {76}, publisher = {The Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2012.0364}, pages = {2845 -- 2855}, year = {2012}, abstract = {Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 {\AA} at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits.}, language = {en} } @inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Mission analysis for an advanced solar photon thruster}, series = {60th International Astronautical Congress 2009, IAC 2009}, volume = {8}, booktitle = {60th International Astronautical Congress 2009, IAC 2009}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {6838 -- 6851}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made.}, language = {en} } @article{Dachwald2005, author = {Dachwald, Bernd}, title = {Optimal Solar Sail Trajectories for Missions to the Outer Solar System}, series = {Journal of guidance, control, and dynamics. 28 (2005), H. 6}, journal = {Journal of guidance, control, and dynamics. 28 (2005), H. 6}, isbn = {0162-3192}, pages = {1187 -- 1193}, year = {2005}, language = {en} } @article{Dachwald2005, author = {Dachwald, Bernd}, title = {Optimization of very-low-thrust trajectories using evolutionary neurocontrol}, series = {Acta Astronautica. 57 (2005), H. 2-8}, journal = {Acta Astronautica. 57 (2005), H. 2-8}, isbn = {0094-5765}, pages = {175 -- 185}, year = {2005}, language = {en} } @article{DachwaldSeboldt2008, author = {Dachwald, Bernd and Seboldt, Wolfgang}, title = {Solar Sails — Propellantless Propulsion for Near- and Medium-Term Deep-Space Missions / W. Seboldt ; B. Dachwald}, series = {Advanced Propulsion Systems and Technologies, Today to 2020 / Claudio Bruno (ed.) ... - (Progress in Astronautics and Aeronautics Series ; 223)}, journal = {Advanced Propulsion Systems and Technologies, Today to 2020 / Claudio Bruno (ed.) ... - (Progress in Astronautics and Aeronautics Series ; 223)}, publisher = {AIAA}, address = {Reston, Va.}, isbn = {978-1-56347-929-8}, pages = {460 S.}, year = {2008}, language = {en} } @article{SavitskayaKistaubayevaDigeletal.2017, author = {Savitskaya, I. S. and Kistaubayeva, A. S. and Digel, Ilya and Shokatayeva, D. H.}, title = {Physicochemical and Antibacterial Properties of Composite Films Based on Bacterial Cellulose and Chitosan for Wound Dressing Materials}, series = {Eurasian Chemico-Technological Journal}, volume = {19}, journal = {Eurasian Chemico-Technological Journal}, number = {3}, issn = {2522-4867}, doi = {10.18321/ectj670}, pages = {255 -- 264}, year = {2017}, language = {en} } @article{DachwaldOhndorf2007, author = {Dachwald, Bernd and Ohndorf, A.}, title = {1st ACT Global Trajectory Optimisation Competition : Results found at DLR}, series = {Acta Astronautica. 61 (2007), H. 9}, journal = {Acta Astronautica. 61 (2007), H. 9}, isbn = {0094-5765}, pages = {742 -- 752}, year = {2007}, language = {en} } @inproceedings{PeloniCeriottiDachwald2015, author = {Peloni, Alessandro and Ceriotti, Matteo and Dachwald, Bernd}, title = {Solar-Sailing Trajectory Design for Close-up NEA Observations Mission}, series = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {21 S.}, year = {2015}, language = {de} } @inproceedings{PeloniCeriottiDachwald2015, author = {Peloni, A. and Ceriotti, M. and Dachwald, Bernd}, title = {Preliminary trajectory design of a multiple NEO rendezvous mission through solar sailing}, series = {Proceedings of the International Astronautical Congress, IAC, Vol. 8, 2014}, booktitle = {Proceedings of the International Astronautical Congress, IAC, Vol. 8, 2014}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-63439-986-9}, pages = {5352 -- 5366}, year = {2015}, language = {en} } @inproceedings{MansurovZhubanovaDigeletal.2008, author = {Mansurov, Zulkhair and Zhubanova, Azhar A. and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Savitskaja, Irina S. and Kozhalakova, A. A. and Kistaubaeva, Aida S.}, title = {The sorption of LPS toxic shock by nanoparticles on base of carbonized vegetable raw materials}, year = {2008}, abstract = {Immobilization of lactobacillus on high temperature carbonizated vegetable raw material (rice husk, grape stones) increases their physiological activity and the quantity of the antibacterial metabolits, that consequently lead to increase of the antagonistic activity of lactobacillus. It is implies that the use of the nanosorbents for the attachment of the probiotical microorganisms are highly perspective for decision the important problems, such as the probiotical preparations delivery to the right address and their attachment to intestines mucosa with the following detoxication of gastro-intestinal tract and the normalization of it's microecology. Besides that, thus, the received carbonizated nanoparticles have peculiar properties - ability to sorption of LPS toxical shock and, hence, to the detoxication of LPS.}, subject = {Kohlenstofffaser}, language = {en} } @inproceedings{DigelTemizArtmannNojimaetal.2003, author = {Digel, Ilya and Temiz Artmann, Ayseg{\"u}l and Nojima, H. and Artmann, Gerhard}, title = {Effects of plasma generated ions on bacteria : [poster]}, year = {2003}, abstract = {Summary and Conclusions PCIs were clearly effective in terms of their antibacterial effects with the strains tested. This efficacy increased with the time the bacteries were exposed to PCIs. The bactericidal action has proved to be irreversible. PCIs were significantly less effective in shadowed areas. PCI exposure caused multiple protein damages as observed in SDS PAGE studies. There was no single but multiple molecular mechanism causing the bacterial death.}, subject = {Clusterion}, language = {en} } @techreport{DigelKayser2017, author = {Digel, Ilya and Kayser, Peter}, title = {VirEx - Eliminierung von Quarant{\"a}ne relevanten Viroiden aus Kulturpflanzen Abschlussbericht des Projektes KMU-innovativ-12: Teilprojekt 3}, publisher = {Institut f{\"u}r Bioengineering (IfB) der FH Aachen}, address = {Aachen}, doi = {10.2314/GBV:1012136345}, year = {2017}, language = {de} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Herč{\´i}k, David and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron D and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and T{\´o}th, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and 'Now-Term 'technologies}, series = {69 th International Astronautical Congress (IAC)}, booktitle = {69 th International Astronautical Congress (IAC)}, pages = {1 -- 18}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, "If you've seen one asteroid, you've seen one asteroid", meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups' studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population.}, language = {en} } @article{HeinEubanksLingametal.2022, author = {Hein, Andreas M. and Eubanks, T. Marshall and Lingam, Manasvi and Hibberd, Adam and Fries, Dan and Schneider, Jean and Kervella, Pierre and Kennedy, Robert and Perakis, Nikolaos and Dachwald, Bernd}, title = {Interstellar now! Missions to explore nearby interstellar objects}, series = {Advances in Space Research}, volume = {69}, journal = {Advances in Space Research}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.06.052}, pages = {402 -- 414}, year = {2022}, abstract = {The recently discovered first hyperbolic objects passing through the Solar System, 1I/'Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system.}, language = {en} } @article{DachwaldBallUlamecetal.2009, author = {Dachwald, Bernd and Ball, Andrew J. and Ulamec, Stephan and Price, Michael E.}, title = {A small mission for in situ exploration of a primitive binary near-Earth asteroid / Ball, Andrew J. ; Ulamec, Stephan ; Dachwald, Bernd ; Price, Michael E. ; [u.a.]}, series = {Advances in Space Research. 43 (2009), H. 2}, journal = {Advances in Space Research. 43 (2009), H. 2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0273-1177}, pages = {317 -- 324}, year = {2009}, language = {en} }