@article{KodomskoiKotliarSchroederetal.2019, author = {Kodomskoi, Leonid and Kotliar, Konstantin and Schr{\"o}der, Andreas and Weiss, Michael and Hille, Konrad}, title = {Suture-Probe Canaloplasty as an Alternative to Canaloplasty using the iTrack™ Microcatheter}, series = {Journal of Glaucoma}, journal = {Journal of Glaucoma}, number = {Epub ahead of print}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1057-0829}, doi = {10.1097/IJG.0000000000001321}, year = {2019}, language = {en} } @phdthesis{Geenen2013, author = {Geenen, Eva-Maria}, title = {Studies of Epstein-Barr virus EBNA2 and its interactions with host cell factors}, publisher = {Universit{\´e} de Grenoble}, address = {Grenoble}, pages = {125 S.}, year = {2013}, language = {en} } @article{DachwaldUlamecPostbergetal.2020, author = {Dachwald, Bernd and Ulamec, Stephan and Postberg, Frank and Sohl, Frank and Vera, Jean-Pierre de and Christoph, Waldmann and Lorenz, Ralph D. and Hellard, Hugo and Biele, Jens and Rettberg, Petra}, title = {Key technologies and instrumentation for subsurface exploration of ocean worlds}, series = {Space Science Reviews}, volume = {216}, journal = {Space Science Reviews}, number = {Art. 83}, publisher = {Springer}, address = {Dordrecht}, issn = {1572-9672}, doi = {10.1007/s11214-020-00707-5}, pages = {45}, year = {2020}, abstract = {In this chapter, the key technologies and the instrumentation required for the subsurface exploration of ocean worlds are discussed. The focus is laid on Jupiter's moon Europa and Saturn's moon Enceladus because they have the highest potential for such missions in the near future. The exploration of their oceans requires landing on the surface, penetrating the thick ice shell with an ice-penetrating probe, and probably diving with an underwater vehicle through dozens of kilometers of water to the ocean floor, to have the chance to find life, if it exists. Technologically, such missions are extremely challenging. The required key technologies include power generation, communications, pressure resistance, radiation hardness, corrosion protection, navigation, miniaturization, autonomy, and sterilization and cleaning. Simpler mission concepts involve impactors and penetrators or - in the case of Enceladus - plume-fly-through missions.}, language = {en} } @article{HorbachStaatPerezVianaetal.2020, author = {Horbach, Andreas and Staat, Manfred and Perez-Viana, Daniel and Simmen, Hans-Peter and Neuhaus, Valentin and Pape, Hans-Christoph and Prescher, Andreas and Ciritsis, Bernhard}, title = {Biomechanical in vitro examination of a standardized low-volume tubular femoroplasty}, series = {Clinical Biomechanics}, volume = {80}, journal = {Clinical Biomechanics}, number = {Art. 105104}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.clinbiomech.2020.105104}, year = {2020}, abstract = {Background Osteoporosis is associated with the risk of fractures near the hip. Age and comorbidities increase the perioperative risk. Due to the ageing population, fracture of the proximal femur also proves to be a socio-economic problem. Preventive surgical measures have hardly been used so far. Methods 10 pairs of human femora from fresh cadavers were divided into control and low-volume femoroplasty groups and subjected to a Hayes fall-loading fracture test. The results of the respective localization and classification of the fracture site, the Singh index determined by computed tomography (CT) examination and the parameters in terms of fracture force, work to fracture and stiffness were evaluated statistically and with the finite element method. In addition, a finite element parametric study with different position angles and variants of the tubular geometry of the femoroplasty was performed. Findings Compared to the control group, the work to fracture could be increased by 33.2\%. The fracture force increased by 19.9\%. The used technique and instrumentation proved to be standardized and reproducible with an average poly(methyl methacrylate) volume of 10.5 ml. The parametric study showed the best results for the selected angle and geometry. Interpretation The cadaver studies demonstrated the biomechanical efficacy of the low-volume tubular femoroplasty. The numerical calculations confirmed the optimal choice of positioning as well as the inner and outer diameter of the tube in this setting. The standardized minimally invasive technique with the instruments developed for it could be used in further comparative studies to confirm the measured biomechanical results.}, language = {en} } @article{AkimbekovQiaoDigeletal.2020, author = {Akimbekov, Nuraly S. and Qiao, Xiaohui and Digel, Ilya and Abdieva, Gulzhamal and Ualieva, Perizat and Zhubanova, Azhar}, title = {The effect of leonardite-derived amendments on soil microbiome structure and potato yield}, series = {Agriculture}, volume = {10}, journal = {Agriculture}, number = {Art. 147}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/agriculture10050147}, pages = {1 -- 17}, year = {2020}, abstract = {Humic substances originating from various organic matters can ameliorate soil properties, stimulate plant growth, and improve nutrient uptake. Due to the low calorific heating value, leonardite is rather unsuitable as fuel. However, it may serve as a potential source of humic substances. This study was aimed at characterizing the leonardite-based soil amendments and examining the effect of their application on the soil microbial community, as well as on potato growth and tuber yield. A high yield (71.1\%) of humic acid (LHA) from leonardite has been demonstrated. Parental leonardite (PL) and LHA were applied to soil prior to potato cultivation. The 16S rRNA sequencing of soil samples revealed distinct relationships between microbial community composition and the application of leonardite-based soil amendments. Potato tubers were planted in pots in greenhouse conditions. The tubers were harvested at the mature stage for the determination of growth and yield parameters. The results demonstrated that the LHA treatments had a significant effect on increasing potato growth (54.9\%) and tuber yield (66.4\%) when compared to the control. The findings highlight the importance of amending leonardite-based humic products for maintaining the biogeochemical stability of soils, for keeping their healthy microbial community structure, and for increasing the agronomic productivity of potato plants.}, language = {en} } @article{HeinkeKnickerAlbracht2020, author = {Heinke, Lars N. and Knicker, Axel J. and Albracht, Kirsten}, title = {Increased shoulder muscle stretch reflex elicitability in supine subject posture}, series = {Isokinetics and Exercise Science}, volume = {28}, journal = {Isokinetics and Exercise Science}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1878-5913}, doi = {10.3233/IES-192219}, pages = {139 -- 146}, year = {2020}, abstract = {BACKGROUND: Muscle stretch reflexes are widely used to examine neural muscle function. The knowledge of reflex response in muscles crossing the shoulder is limited. OBJECTIVE: To quantify reflex modulation according to various subject postures and different procedures of muscle pre-activation steering. METHODS: Thirteen healthy male participants performed two sets of external shoulder rotation stretches in various positions and with different procedures of muscle pre-activation steering on an isokinetic dynamometer over a range of two different pre-activation levels. All stretches were applied with a dynamometer acceleration of 104∘/s2 and a velocity of 150∘/s. Electromyographical response was measured via sEMG. RESULTS: Consistent reflexive response was observed in all tested muscles in all experimental conditions. The reflex elicitation rate revealed a significant muscle main effect (F (5,288) = 2.358, ρ= 0.040; η2= 0.039; f= 0.637) and a significant test condition main effect (F (1,288) = 5.884, ρ= 0.016; η2= 0.020; f= 0.143). Reflex latency revealed a significant muscle pre-activation level main effect (F (1,274) = 5.008, ρ= 0.026; η2= 0.018; f= 0.469). CONCLUSION: Muscular reflexive response was more consistent in the primary internal rotators of the shoulder. Supine posture in combination with visual feedback of muscle pre-activation level enhanced the reflex elicitation rate.}, language = {en} } @article{AkimbekovDigelSherelkhanetal.2020, author = {Akimbekov, Nuraly S. and Digel, Ilya and Sherelkhan, Dinara K. and Lutfor, Afzalunnessa B. and Razzaque, Mohammed S.}, title = {Vitamin D and the Host-Gut Microbiome: A Brief Overview}, series = {Acta Histochemica et Cytochemica}, volume = {53}, journal = {Acta Histochemica et Cytochemica}, number = {3}, publisher = {Japan Society of Histochemistry and Cytochemistry}, address = {Osaka}, issn = {1347-5800}, doi = {10.1267/ahc.20011}, pages = {33 -- 42}, year = {2020}, abstract = {There is a growing body of evidence for the effects of vitamin D on intestinal host-microbiome interactions related to gut dysbiosis and bowel inflammation. This brief review highlights the potential links between vitamin D and gut health, emphasizing the role of vitamin D in microbiological and immunological mechanisms of inflammatory bowel diseases. A comprehensive literature search was carried out in PubMed and Google Scholar using combinations of keywords "vitamin D," "intestines," "gut microflora," "bowel inflammation". Only articles published in English and related to the study topic are included in the review. We discuss how vitamin D (a) modulates intestinal microbiome function, (b) controls antimicrobial peptide expression, and (c) has a protective effect on epithelial barriers in the gut mucosa. Vitamin D and its nuclear receptor (VDR) regulate intestinal barrier integrity, and control innate and adaptive immunity in the gut. Metabolites from the gut microbiota may also regulate expression of VDR, while vitamin D may influence the gut microbiota and exert anti-inflammatory and immune-modulating effects. The underlying mechanism of vitamin D in the pathogenesis of bowel diseases is not fully understood, but maintaining an optimal vitamin D status appears to be beneficial for gut health. Future studies will shed light on the molecular mechanisms through which vitamin D and VDR interactions affect intestinal mucosal immunity, pathogen invasion, symbiont colonization, and antimicrobial peptide expression.}, language = {en} } @article{RamoshabaHuismanLammertynetal.2020, author = {Ramoshaba, Nthai E. and Huisman, Hugo W. and Lammertyn, Leandi and Kotliar, Konstantin and Schutte, Aletta E. and Smith, Wayne}, title = {Retinal microvasculature and masked hypertension in young adults: the African-PREDICT study}, series = {Hypertension Research}, journal = {Hypertension Research}, number = {43}, publisher = {Springer Nature}, address = {Osaka}, issn = {1348-4214}, doi = {10.1038/s41440-020-0487-0}, pages = {1231 -- 1238}, year = {2020}, abstract = {Masked hypertension is known to induce microvascular complications. However, it is unclear whether early microvascular changes are already occurring in young, otherwise healthy adults. We therefore investigated whether retinal microvascular calibers and acute responses to a flicker stimulus are related to masked hypertension. We used the baseline data of 889 participants aged 20-30 years who were taking part in the African Prospective study on the Early Detection and Identification of Cardiovascular Disease and Hypertension. Clinic and 24-h ambulatory blood pressure were measured. The central retinal artery equivalent (CRAE) and central retinal vein equivalent were calculated from fundus images, and retinal vessel dilation was determined in response to flicker light-induced provocation. A smaller CRAE was observed in those with masked hypertension vs. those with normotension (157.1 vs. 161.2 measuring units, P < 0.001). In forward multivariable-adjusted regression analysis, only CRAE was negatively related to masked hypertension [adjusted R² = 0.267, β = -0.097 (95\% CI = -0.165; -0.029), P = 0.005], but other retinal microvascular parameters were not associated with masked hypertension. In multivariable logistic regression analyses, masked hypertension [OR = 2.333, (95\% CI = 1.316; 4.241), P = 0.004] was associated with a narrower CRAE. In young healthy adults, masked hypertension was associated with retinal arteriolar narrowing, thereby reflecting early microvascular alterations known to predict cardiovascular outcomes in later life.}, language = {en} } @article{HeinEubanksHibberdetal.2020, author = {Hein, Andreas M. and Eubanks, T. Marshall and Hibberd, Adam and Fries, Dan and Schneider, Jean and Lingam, Manasvi and Kennedy, Robert and Perakis, Nikolaos and Dachwald, Bernd and Kervella, Pierre}, title = {Interstellar Now! Missions to and sample returns from nearby interstellar objects}, publisher = {Elsevier}, address = {Amsterdam}, pages = {1 -- 8}, year = {2020}, abstract = {The recently discovered first high velocity hyperbolic objects passing through the Solar System, 1I/'Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Interstellar objects likely formed very far from the solar system in both time and space; their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system.}, language = {en} } @article{TranStaat2021, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {Direct plastic structural design under random strength and random load by chance constrained programming}, series = {European Journal of Mechanics - A/Solids}, volume = {85}, journal = {European Journal of Mechanics - A/Solids}, number = {Article 104106}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0997-7538}, doi = {10.1016/j.euromechsol.2020.104106}, year = {2021}, language = {en} } @article{MuellerJungAhammer2017, author = {M{\"u}ller, Wolfram and Jung, Alexander and Ahammer, Helmut}, title = {Advantages and problems of nonlinear methods applied to analyze physiological time signals: human balance control as an example}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {Article number 2464}, publisher = {Springer Nature}, address = {Cham}, isbn = {2045-2322}, doi = {10.1038/s41598-017-02665-5}, pages = {1 -- 11}, year = {2017}, language = {en} } @article{SeefeldtDachwald2021, author = {Seefeldt, Patric and Dachwald, Bernd}, title = {Temperature increase on folded solar sail membranes}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2020.09.026}, pages = {2688 -- 2695}, year = {2021}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2017, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian D. and Lange, Caroline and Ulamec, Stephan and Ziach, Christian and Spr{\"o}witz, Tom and Ruffer, Michael and Seefeldt, Patric and Spietz, Peter and Toth, Norbert and Mimasu, Yuya and Rittweger, Andreas and Bibring, Jean-Pierre and Braukhane, Andy and Boden, Ralf Christian and Dumont, Etienne and Jahnke, Stephan Siegfried and Jetzschmann, Michael and Kr{\"u}ger, Hans and Lange, Michael and Gomez, Antonio Martelo and Massonett, Didier and Okada, Tatsuaki and Sagliano, Marco and Sasaki, Kaname and Schr{\"o}der, Silvio and Sippel, Martin and Skoczylas, Thomas and Wejmo, Elisabet}, title = {Small landers and separable sub-spacecraft for near-term solar sails}, series = {The Fourth International Symposium on Solar Sailing 2017}, booktitle = {The Fourth International Symposium on Solar Sailing 2017}, pages = {1 -- 10}, year = {2017}, abstract = {Following the successful PHILAE landing with ESA's ROSETTA probe and the launch of the MINERVA rovers and the Mobile Asteroid Surface Scout, MASCOT, aboard the JAXA space probe, HAYABUSA2, to asteroid (162173) Ryugu, small landers have found increasing interest. Integrated at the instrument level in their mothership they support small solar system body studies. With efficient capabilities, resource-friendly design and inherent robustness they are an attractive exploration mission element. We discuss advantages and constraints of small sub-spacecraft, focusing on emerging areas of activity such as asteroid diversity studies, planetary defence, and asteroid mining, on the background of our projects PHILAE, MASCOT, MASCOT2, the JAXA-DLR Solar Power Sail Lander Design Study, and others. The GOSSAMER-1 solar sail deployment concept also involves independent separable sub-spacecraft operating synchronized to deploy the sail. Small spacecraft require big changes in the way we do things and occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. In a Constraints-Driven Engineering environment we apply Concurrent Design and Engineering (CD/CE), Concurrent Assembly, Integration and Verification (CAIV) and Model-Based Systems Engineering (MBSE). Near-term solar sails will likely be small spacecraft which we expect to harmonize well with nano-scale separable instrument payload packages.}, language = {en} } @inproceedings{SpurmannOhndorfDachwaldetal.2009, author = {Spurmann, J{\"o}rn and Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang and L{\"o}b, Horst and Schartner, Karl-Heinz}, title = {Interplanetary trajectory optimization for a sep mission to Saturn}, series = {60th International Astronautical Congress 2009}, booktitle = {60th International Astronautical Congress 2009}, isbn = {9781615679089}, pages = {5234 -- 5248}, year = {2009}, abstract = {The recently proposed NASA and ESA missions to Saturn and Jupiter pose difficult tasks to mission designers because chemical propulsion scenarios are not capable of transferring heavy spacecraft into the outer solar system without the use of gravity assists. Thus our developed mission scenario based on the joint NASA/ESA Titan Saturn System Mission baselines solar electric propulsion to improve mission flexibility and transfer time. For the calculation of near-globally optimal low-thrust trajectories, we have used a method called Evolutionary Neurocontrol, which is implemented in the low-thrust trajectory optimization software InTrance. The studied solar electric propulsion scenario covers trajectory optimization of the interplanetary transfer including variations of the spacecraft's thrust level, the thrust unit's specific impulse and the solar power generator power level. Additionally developed software extensions enabled trajectory optimization with launcher-provided hyperbolic excess energy, a complex solar power generator model and a variable specific impulse ion engine model. For the investigated mission scenario, Evolutionary Neurocontrol yields good optimization results, which also hold valid for the more elaborate spacecraft models. Compared to Cassini/Huygens, the best found solutions have faster transfer times and a higher mission flexibility in general.}, language = {en} } @inproceedings{LoebSchartnerDachwaldetal.2007, author = {Loeb, Horst Wolfgang and Schartner, Karl-Heinz and Dachwald, Bernd and Seboldt, Wolfgang}, title = {SEP-Sample return from a main belt asteroid}, series = {30th International Electric Propulsion Conference}, booktitle = {30th International Electric Propulsion Conference}, pages = {1 -- 11}, year = {2007}, abstract = {By DLR-contact, sample return missions to the large main-belt asteroid "19, Fortuna" have been studied. The mission scenario has been based on three ion thrusters of the RIT-22 model, which is presently under space qualification, and on solar arrays equipped with triple-junction GaAs solar cells. After having designed the spacecraft, the orbit-to-orbit trajectories for both, a one-way SEP mission with a chemical sample return and an all-SEP return mission, have been optimized using a combination of artificial neural networks with evolutionary algorithms. Additionally, body-to-body trajectories have been investigated within a launch period between 2012 and 2015. For orbit-to-orbit calculation, the launch masses of the hybrid mission and of the all-SEP mission resulted in 2.05 tons and 1.56 tons, respectively, including a scientific payload of 246 kg. For the related transfer durations 4.14 yrs and 4.62 yrs were obtained. Finally, a comparison between the mission scenarios based on SEP and on NEP have been carried out favouring clearly SEP.}, language = {en} } @inproceedings{DachwaldMengaliQuartaetal.2007, author = {Dachwald, Bernd and Mengali, Giovanni and Quarta, Alessandro A and Macdonald, Malcolm and McInnes, Colin R}, title = {Optical solar sail degradation modelling}, series = {1st International Symposium on Solar Sailing}, booktitle = {1st International Symposium on Solar Sailing}, pages = {1 -- 27}, year = {2007}, abstract = {We propose a simple parametric OSSD model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails.}, language = {en} } @article{Dachwald2005, author = {Dachwald, Bernd}, title = {Optimization of very-low-thrust trajectories using evolutionary neurocontrol}, series = {Acta Astronautica}, volume = {57}, journal = {Acta Astronautica}, number = {2-8}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, isbn = {1879-2030}, pages = {175 -- 185}, year = {2005}, abstract = {Searching optimal interplanetary trajectories for low-thrust spacecraft is usually a difficult and time-consuming task that involves much experience and expert knowledge in astrodynamics and optimal control theory. This is because the convergence behavior of traditional local optimizers, which are based on numerical optimal control methods, depends on an adequate initial guess, which is often hard to find, especially for very-low-thrust trajectories that necessitate many revolutions around the sun. The obtained solutions are typically close to the initial guess that is rarely close to the (unknown) global optimum. Within this paper, trajectory optimization problems are attacked from the perspective of artificial intelligence and machine learning. Inspired by natural archetypes, a smart global method for low-thrust trajectory optimization is proposed that fuses artificial neural networks and evolutionary algorithms into so-called evolutionary neurocontrollers. This novel method runs without an initial guess and does not require the attendance of an expert in astrodynamics and optimal control theory. This paper details how evolutionary neurocontrol works and how it could be implemented. The performance of the method is assessed for three different interplanetary missions with a thrust to mass ratio <0.15mN/kg (solar sail and nuclear electric).}, language = {en} } @inproceedings{SchoutetensDachwaldHeiligers2021, author = {Schoutetens, Frederic and Dachwald, Bernd and Heiligers, Jeannette}, title = {Optimisation of photon-sail trajectories in the alpha-centauri system using evolutionary neurocontrol}, series = {8th ICATT 2021}, booktitle = {8th ICATT 2021}, pages = {1 -- 15}, year = {2021}, abstract = {With the increased interest for interstellar exploration after the discovery of exoplanets and the proposal by Breakthrough Starshot, this paper investigates the optimisation of photon-sail trajectories in Alpha Centauri. The prime objective is to find the optimal steering strategy for a photonic sail to get captured around one of the stars after a minimum-time transfer from Earth. By extending the idea of the Breakthrough Starshot project with a deceleration phase upon arrival, the mission's scientific yield will be increased. As a secondary objective, transfer trajectories between the stars and orbit-raising manoeuvres to explore the habitable zones of the stars are investigated. All trajectories are optimised for minimum time of flight using the trajectory optimisation software InTrance. Depending on the sail technology, interstellar travel times of 77.6-18,790 years can be achieved, which presents an average improvement of 30\% with respect to previous work. Still, significant technological development is required to reach and be captured in the Alpha-Centauri system in less than a century. Therefore, a fly-through mission arguably remains the only option for a first exploratory mission to Alpha Centauri, but the enticing results obtained in this work provide perspective for future long-residence missions to our closest neighbouring star system.}, language = {en} } @inproceedings{SeefeldtBauerDachwaldetal.2015, author = {Seefeldt, Patric and Bauer, Waldemar and Dachwald, Bernd and Grundmann, Jan Thimo and Straubel, Marco and Sznajder, Maciej and T{\´o}th, Norbert and Zander, Martin E.}, title = {Large lightweight deployable structures for planetary defence: solar sail propulsion, solar concentrator payloads, large-scale photovoltaic power}, series = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {24}, year = {2015}, language = {en} } @inproceedings{Dachwald2017, author = {Dachwald, Bernd}, title = {Radiation pressure force model for an ideal laser-enhanced solar sail}, series = {4th International Symposium on Solar Sailing}, booktitle = {4th International Symposium on Solar Sailing}, pages = {1 -- 5}, year = {2017}, abstract = {The concept of a laser-enhanced solar sail is introduced and the radiation pressure force model for an ideal laser-enhanced solar sail is derived. A laser-enhanced solar sail is a "traditional" solar sail that is, however, not solely propelled by solar radiation, but additionally by a laser beam that illuminates the sail. The additional laser radiation pressure increases the sail's propulsive force and can give, depending on the location of the laser source, more control authority over the direction of the solar sail's propulsive force vector. This way, laser-enhanced solar sails may augment already existing solar sail mission concepts and make novel mission concepts feasible.}, language = {en} }