@article{RauppSchmittWalzetal.2018, author = {Raupp, Sebastian M. and Schmitt, Marcel and Walz, Anna-Lena and Diehm, Ralf and Hummel, Helga and Scharfer, Philip and Schabel, Wilhelm}, title = {Slot die stripe coating of low viscous fluids}, series = {Journal of Coatings Technology and Research}, volume = {15}, journal = {Journal of Coatings Technology and Research}, number = {5}, publisher = {Springer}, issn = {1935-3804}, doi = {10.1007/s11998-017-0039-y}, pages = {899 -- 911}, year = {2018}, abstract = {Slot die coating is applied to deposit thin and homogenous films in roll-to-roll and sheet-to-sheet applications. The critical step in operation is to choose suitable process parameters within the process window. In this work, we investigate an upper limit for stripe coatings. This maximum film thickness is characterized by stripe merging which needs to be avoided in a stable process. It is shown that the upper limit reduces the process window for stripe coatings to a major extent. As a result, stripe coatings at large coating gaps and low viscosities are only possible for relatively thick films. Explaining the upper limit, a theory of balancing the side pressure in the gap region in the cross-web direction has been developed.}, language = {en} } @article{Delaittre2019, author = {Delaittre, Guillaume}, title = {Telechelic Poly(2-Oxazoline)s}, series = {European Polymer Journal}, journal = {European Polymer Journal}, number = {In Press, Journal Pre-proof, 109281}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2019.109281}, year = {2019}, language = {en} } @article{SchmidtTurgutLeetal.2020, author = {Schmidt, Aaron C. and Turgut, Hatice and Le, Dao and Beloqui, Ana and Delaittre, Guillaume}, title = {Making the best of it: nitroxide-mediated polymerization of methacrylates via the copolymerization approach with functional styrenics}, series = {Polymer Chemistry}, volume = {11}, journal = {Polymer Chemistry}, number = {2}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, doi = {10.1039/C9PY01458F}, pages = {593 -- 604}, year = {2020}, abstract = {The SG1-mediated solution polymerization of methyl methacrylate (MMA) and oligo(ethylene glycol) methacrylate (OEGMA, Mₙ = 300 g mol⁻¹) in the presence of a small amount of functional/reactive styrenic comonomer is investigated. Moieties such as pentafluorophenyl ester, triphenylphosphine, azide, pentafluorophenyl, halide, and pyridine are considered. A comonomer fraction as low as 5 mol\% typically results in a controlled/living behavior, at least up to 50\% conversion. Chain extensions with styrene for both systems were successfully performed. Variation of physical properties such as refractive index (for MMA) and phase transition temperature (for OEGMA) were evaluated by comparing to 100\% pure homopolymers. The introduction of an activated ester styrene derivative in the polymerization of OEGMA allows for the synthesis of reactive and hydrophilic polymer brushes with defined thickness. Finally, using the example of pentafluorostyrene as controlling comonomer, it is demonstrated that functional PMMA-b-PS are able to maintain a phase separation ability, as evidenced by the formation of nanostructured thin films.}, language = {en} } @article{WardoyoNoorElbersetal.2020, author = {Wardoyo, Arinto Y.P. and Noor, Johan A.E. and Elbers, Gereon and Schmitz, Sandra and Flaig, Sascha T. and Budianto, Arif}, title = {Characterizing volcanic ash elements from the 2015 eruptions of bromo and raung volcanoes, Indonesia}, series = {Polish Journal of Environmental Studies}, volume = {29}, journal = {Polish Journal of Environmental Studies}, number = {2}, publisher = {HARD}, address = {Olsztyn}, issn = {2083-5906}, doi = {10.15244/pjoes/99101}, pages = {1899 -- 1907}, year = {2020}, abstract = {The volcanic eruptions of Mt. Bromo and Mt. Raung in East Java, Indonesia, in 2015 perturbed volcanic materials and affected surface-layer air quality at surrounding locations. During the episodes, the volcanic ash from the eruptions influenced visibility, traffic accidents, flight schedules, and human health. In this research, the volcanic ash particles were collected and characterized by relying on the detail of physical observation. We performed an assessment of the volcanic ash elements to characterize the volcanic ash using two different methods which are aqua regia extracts followed by MP-AES and XRF laboratory test of bulk samples. The analysis results showed that the volcanic ash was mixed of many materials, such as Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Ni, and others. Fe, Si, Ca, and Al were found as the major elements, while the others were the trace elements Ba, Cr, Cu, Mn, P, Mn, Ni, Zn, Sb, Sr, and V with the minor concentrations. XRF analyses showed that Fe dominated the elements of the volcanic ash. The XRF analysis showed that Fe was at 35.40\% in Bromo and 43.00\% in Raung of the detected elements in bulk material. The results of aqua regia extracts analyzed by MP-AES were 1.80\% and 1.70\% of Fe element for Bromo and Raung volcanoes, respectively.}, language = {en} } @article{NiedermeyerZhouDursunetal.2016, author = {Niedermeyer, Angela and Zhou, Bei and Dursun, G{\"o}zde and Temiz Artmann, Ayseg{\"u}l and Markert, Bernd}, title = {An examination of tissue engineered scaffolds in a bioreactor}, series = {Proceedings in Applied Mathematics and Mechanics PAMM}, volume = {16}, journal = {Proceedings in Applied Mathematics and Mechanics PAMM}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1617-7061}, doi = {10.1002/pamm.201610038}, pages = {99 -- 100}, year = {2016}, abstract = {Replacement tissues, designed to fill in articular cartilage defects, should exhibit the same properties as the native material. The aim of this study is to foster the understanding of, firstly, the mechanical behavior of the material itself and, secondly, the influence of cultivation parameters on cell seeded implants as well as on cell migration into acellular implants. In this study, acellular cartilage replacement material is theoretically, numerically and experimentally investigated regarding its viscoelastic properties, where a phenomenological model for practical applications is developed. Furthermore, remodeling and cell migration are investigated.}, language = {en} } @article{RoehlenPilasSchoeningetal.2017, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Sch{\"o}ning, Michael Josef and Selmer, Thorsten}, title = {Development of an amperometric biosensor platform for the combined determination of l-Malic, Fumaric, and l-Aspartic acid}, series = {Applied Biochemistry and Biotechnology}, volume = {183}, journal = {Applied Biochemistry and Biotechnology}, publisher = {Springer}, address = {Berlin}, issn = {1559-0291}, doi = {10.1007/s12010-017-2578-1}, pages = {566 -- 581}, year = {2017}, abstract = {Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD+) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM-1 (L-malate biosensor) and 0.4 μA mM-1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0-10.0 mM with a sensitivity of 0.09 μA mM-1. The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates.}, language = {en} } @article{PilasYaziciSelmeretal.2017, author = {Pilas, Johanna and Yazici, Yasemen and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, d- and l-lactate}, series = {Electrochimica Acta}, volume = {251}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.07.119}, pages = {256 -- 262}, year = {2017}, abstract = {The immobilization of NAD+-dependent dehydrogenases, in combination with a diaphorase, enables the facile development of multiparametric sensing devices. In this work, an amperometric biosensor array for simultaneous determination of ethanol, formate, d- and l-lactate is presented. Enzyme immobilization on platinum thin-film electrodes was realized by chemical cross-linking with glutaraldehyde. The optimization of the sensor performance was investigated with regard to enzyme loading, glutaraldehyde concentration, pH, cofactor concentration and temperature. Under optimal working conditions (potassium phosphate buffer with pH 7.5, 2.5 mmol L-1 NAD+, 2.0 mmol L-1 ferricyanide, 25 °C and 0.4\% glutaraldehyde) the linear working range and sensitivity of the four sensor elements was improved. Simultaneous and cross-talk free measurements of four different metabolic parameters were performed successfully. The reliable analytical performance of the biosensor array was demonstrated by application in a clarified sample of inoculum sludge. Thereby, a promising approach for on-site monitoring of fermentation processes is provided.}, language = {en} } @article{BreuerMangSchoeningetal.2017, author = {Breuer, Lars and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Investigation of the spatial resolution of a laser-based stimulation process for light-addressable hydrogels with incorporated graphene oxide by means of IR thermography}, series = {Sensors and Actuators A: Physical}, volume = {268}, journal = {Sensors and Actuators A: Physical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-4247}, doi = {10.1016/j.sna.2017.11.031}, pages = {126 -- 132}, year = {2017}, language = {en} } @article{DemmerChowdhurySelmeretal.2017, author = {Demmer, Julius K. and Chowdhury, Nilanjan Pal and Selmer, Thorsten and Ermler, Ulrich and Buckel, Wolfgang}, title = {The semiquinone swing in the bifurcating electron transferring flavoprotein/butyryl-CoA dehydrogenase complex from Clostridium difficile}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {1}, issn = {2041-1723}, doi = {10.1038/s41467-017-01746-3}, pages = {1 -- 10}, year = {2017}, language = {en} } @article{WerkhausenAlbrachtCroninetal.2017, author = {Werkhausen, Amelie and Albracht, Kirsten and Cronin, Neil J. and Meier, Rahel and Mojsen-Moeller, Jens and Seynnes, Olivier R.}, title = {Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task}, series = {Journal of Experimental Biology}, volume = {220}, journal = {Journal of Experimental Biology}, number = {22}, issn = {0022-0949}, doi = {10.1242/jeb.164111}, pages = {4141 -- 4149}, year = {2017}, language = {en} } @article{EckertRudolphGuoetal.2018, author = {Eckert, Alexander and Rudolph, Tobias and Guo, Jiaqi and Mang, Thomas and Walther, Andreas}, title = {Exceptionally Ductile and Tough Biomimetic Artificial Nacre with Gas Barrier Function}, series = {Advanced Materials}, volume = {30}, journal = {Advanced Materials}, number = {32}, publisher = {Wiley-VCH}, doi = {10.1002/adma.201802477}, pages = {Article number 1802477}, year = {2018}, abstract = {Synthetic mimics of natural high-performance structural materials have shown great and partly unforeseen opportunities for the design of multifunctional materials. For nacre-mimetic nanocomposites, it has remained extraordinarily challenging to make ductile materials with high stretchability at high fractions of reinforcements, which is however of crucial importance for flexible barrier materials. Here, highly ductile and tough nacre-mimetic nanocomposites are presented, by implementing weak, but many hydrogen bonds in a ternary nacre-mimetic system consisting of two polymers (poly(vinyl amine) and poly(vinyl alcohol)) and natural nanoclay (montmorillonite) to provide efficient energy dissipation and slippage at high nanoclay content (50 wt\%). Tailored interactions enable exceptional combinations of ductility (close to 50\% strain) and toughness (up to 27.5 MJ m⁻³). Extensive stress whitening, a clear sign of high internal dynamics at high internal cohesion, can be observed during mechanical deformation, and the materials can be folded like paper into origami planes without fracture. Overall, the new levels of ductility and toughness are unprecedented in highly reinforced bioinspired nanocomposites and are of critical importance to future applications, e.g., as barrier materials needed for encapsulation and as a printing substrate for flexible organic electronics.}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @inproceedings{HoffmannNierenGaebetal.2019, author = {Hoffmann, Katharina and Nieren, Monika and G{\"a}b, Martina and Kasper, Anna and Elbers, Gereon}, title = {The potential of near infrared spectroscopy (NIRS) for the environmental biomonitoring of plants}, series = {International conference on Life Sciences and Technology}, volume = {276}, booktitle = {International conference on Life Sciences and Technology}, number = {012009}, issn = {1755-1315}, doi = {10.1088/1755-1315/276/1/012009}, pages = {1 -- 3}, year = {2019}, abstract = {In the current environmental condition, the increase in pollution of the air, water, and soil indirectly will induce plants stress and decrease vegetation growth rate. These issues pay more attention to be solved by scientists worldwide. The higher level of chemical pollutants also induced the gradual changes in plants metabolism and decreased enzymatic activity. Importantly, environmental biomonitoring may play a pivotal contribution to prevent biodiversity degradation and plants stress due to pollutant exposure. Several previous studies have been done to monitor the effect of environmental changes on plants growth. Among that, Near Infrared spectroscopy (NIRS) offers an alternative way to observe the significant alteration of plant physiology caused by environmental damage related to pollution. Impairment of photosynthesis, nutrient and oxidative imbalances, and mutagenesis.}, language = {en} } @article{SchiffelsSelmer2019, author = {Schiffels, Johannes and Selmer, Thorsten}, title = {Combinatorial assembly of ferredoxin-linked modules in Escherichia coli yields a testing platform for Rnf-complexes}, series = {Biotechnology and Bioengineering}, journal = {Biotechnology and Bioengineering}, number = {accepted article}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/bit.27079}, pages = {1 -- 36}, year = {2019}, language = {en} } @misc{FriedericiHojdis2018, author = {Friederici, Nadja-Annette and Hojdis, Nils}, title = {Fahrzeugreifen}, year = {2018}, abstract = {Die Erfindung betrifft einen Fahrzeugreifen mit zumindest einem radial außen befindlichen Gummilaufstreifen, Wulstbereichen f{\"u}r den Anschluss an eine Felge und mit auf einer Gummimischung basierenden Seitenwandbereichen zwischen Gummilaufstreifen und den Wulstbereichen. Ferner betrifft die Erfindung Verfahren zur Herstellung solcher Fahrzeugreifen. Um den Anteil der umweltsch{\"a}dlichen Substanzen, insbesondere im Innenstadtbereich, zu reduzieren weisen die Seitenwandbereiche auf der {\"a}ußeren Oberfl{\"a}che eine f{\"u}r den oxidativen Abbau von Molek{\"u}len photokatalytisch aktive Substanz auf.}, language = {de} } @misc{HojdisMulthauptReckeretal.2019, author = {Hojdis, Nils and Multhaupt, Hendrik and Recker, Carla and Wark, Michael}, title = {Schwefelvernetzbare Kautschukmischung, Vulkanisat der Kautschukmischung und Fahrzeugreifen}, year = {2019}, abstract = {Die Erfindung betrifft eine schwefelvernetzbare Kautschukmischung, deren Vulkanisat und einen Fahrzeugreifen. Die erfindungsgem{\"a}ße Kautschukmischung enth{\"a}lt wenigstens folgende Bestandteile: - Wenigstens einen Dienkautschuk; - wenigstens eine Kohle (HTC-Kohle), die mittels hydrothermaler Karbonisierung von wenigstens einer Ausgangssubstanz hergestellt ist. Der erfindungsgem{\"a}ße Fahrzeugreifen weist in wenigstens einem Bauteil wenigstens ein erfindungsgem{\"a}ßes Vulkanisat der Kautschukmischung auf.}, language = {de} } @misc{DauerHojdisMuelleretal.2019, author = {Dauer, David-Raphael and Hojdis, Nils and M{\"u}ller, Norbert and Recker, Carla and Schax, Fabian and Sch{\"o}ffel, Julia and Tarantola, Gesa and Weber, Christine}, title = {Schwefelvernetzbare Kautschukmischung, Vulkanisat der Kautschukmischung und Fahrzeugreifen}, year = {2019}, abstract = {Die Erfindung betrifft eine schwefelvernetzbare Kautschukmischung, deren Vulkanisat und einen Fahrzeugreifen. Die schwefelvernetzbare Kautschukmischung enth{\"a}lt wenigstens die folgenden Bestandteile: - wenigstens einen Dienkautschuk; und - 10 bis 300 phr wenigstens einer Kiesels{\"a}ure; und - 1 bis 30 phf wenigstens eines Silans A mit der allgemeinen Summenformel A-I) A-I)(R1)oSi-R2-(S-R3)q-S-X; und - 0,5 bis 30 phf wenigstens eines Silans B mit der allgemeinen Summenformel B-I) B-I) (R1)oSi-R2-(S-R3)u-S-R2-Si(R1)o wobei q =1, 2 oder 3 ist; und u = 1, 2 oder 3 ist; und X ein Wasserstoffatom oder eine -C(=O)-R8 Gruppe ist wobei R8 ausgew{\"a}hlt ist aus Wasserstoff, C1-C20 Alkylgruppen, vorzugsweise C1-C17, C6-C20- Arylgruppen, vorzugsweise Phenyl, C2-C20-Alkenylgruppen und C7-C20-Aralkylgruppen.}, language = {de} } @article{MoretAlkemadeUpcraftetal.2020, author = {Moret, J.L.T.M. and Alkemade, J. and Upcraft, T.M. and Paulßen, Elisabeth and Wolterbeek, H.T. and Ommen, J.R. van and Denkova, A.G.}, title = {The application of atomic layer deposition in the production of sorbents for ⁹⁹Mo/⁹⁹ᵐTc generator}, series = {Applied Radiation and Isotopes}, volume = {164}, journal = {Applied Radiation and Isotopes}, number = {109266}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0969-8043}, doi = {10.1016/j.apradiso.2020.109266}, pages = {9}, year = {2020}, abstract = {New production routes for ⁹⁹Mo are steadily gaining importance. However, the obtained specific activity is much lower than currently produced by the fission of U-235. To be able to supply hospitals with ⁹⁹Mo/⁹⁹ᵐTc generators with the desired activity, the adsorption capacity of the column material should be increased. In this paper we have investigated whether the gas phase coating technique Atomic Layer Deposition (ALD), which can deposit ultra-thin layers on high surface area materials, can be used to attain materials with high adsorption capacity for ⁹⁹Mo. For this purpose, ALD was applied on a silica-core sorbent material to coat it with a thin layer of alumina. This sorbent material shows to have a maximum adsorption capacity of 120 mg/g and has a ⁹⁹ᵐTc elution efficiency of 55 ± 2\% based on 3 executive elutions.}, language = {en} } @article{SchiedermeierRettnerHeilmannetal.2019, author = {Schiedermeier, Maximilian and Rettner, Cornelius and Heilmann, Marcel and Schneider, Felix and Marz, Martin}, title = {Interference of automotive HV-DC-systems by traction voltage-source-inverters (VSI)}, series = {2019 IEEE Transportation Electrification Conference (ITEC-India)}, journal = {2019 IEEE Transportation Electrification Conference (ITEC-India)}, publisher = {IEEE}, address = {New York}, doi = {10.1109/ITEC-India48457.2019.ITECINDIA2019-37}, pages = {1 -- 6}, year = {2019}, language = {en} } @article{SvaneborgKarimiVarzanehHojdisetal.2016, author = {Svaneborg, Carsten and Karimi-Varzaneh, Hossein Ali and Hojdis, Nils and Fleck, Franz and Everaers, Ralf}, title = {Multiscale approach to equilibrating model polymer melts}, series = {Physical Review E}, volume = {94}, journal = {Physical Review E}, number = {032502}, publisher = {AIP Publishing}, address = {Melville, NY}, issn = {2470-0053}, doi = {10.1103/PhysRevE.94.032502}, year = {2016}, abstract = {We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed to be computationally effective at each scale. Density fluctuations in the melt structure above the tube scale are minimized through a Monte Carlo simulated annealing of a lattice polymer model. Subsequently the melt structure below the tube scale is equilibrated via the Rouse dynamics of a force-capped Kremer-Grest model that allows chains to partially interpenetrate. Finally the Kremer-Grest force field is introduced to freeze the topological state and enforce correct monomer packing. We generate 15 melts of 500 chains of 10.000 beads for varying chain stiffness as well as a number of melts with 1.000 chains of 15.000 monomers. To validate the equilibration process we study the time evolution of bulk, collective, and single-chain observables at the monomeric, mesoscopic, and macroscopic length scales. Extension of the present method to longer, branched, or polydisperse chains, and/or larger system sizes is straightforward.}, language = {en} }