@incollection{AbeleKleefeld2020, author = {Abele, Daniel and Kleefeld, Andreas}, title = {New Numerical Results for the Optimization of Neumann Eigenvalues}, series = {Computational and Analytic Methods in Science and Engineering}, booktitle = {Computational and Analytic Methods in Science and Engineering}, editor = {Constanda, Christian}, publisher = {Birkh{\"a}user}, address = {Cham}, isbn = {978-3-030-48185-8 (Print)}, doi = {10.1007/978-3-030-48186-5_1}, pages = {1 -- 20}, year = {2020}, abstract = {We present new numerical results for shape optimization problems of interior Neumann eigenvalues. This field is not well understood from a theoretical standpoint. The existence of shape maximizers is not proven beyond the first two eigenvalues, so we study the problem numerically. We describe a method to compute the eigenvalues for a given shape that combines the boundary element method with an algorithm for nonlinear eigenvalues. As numerical optimization requires many such evaluations, we put a focus on the efficiency of the method and the implemented routine. The method is well suited for parallelization. Using the resulting fast routines and a specialized parametrization of the shapes, we found improved maxima for several eigenvalues.}, language = {en} } @inproceedings{LosseGehrkeUllrichetal.2022, author = {Losse, Ann-Kathrin and Gehrke, Melanie and Ullrich, Andr{\´e} and Czarnecki, Christian and Sultanow, Eldar and Breithaupt, Carsten and Koch, Christian}, title = {Entwicklung einer Open-Data-Referenzarchitektur f{\"u}r die Luftfahrtindustrie}, series = {INFORMATIK 2022 - Informatik in den Naturwissenschaften, Proceedings}, booktitle = {INFORMATIK 2022 - Informatik in den Naturwissenschaften, Proceedings}, publisher = {GI - Gesellschaft f{\"u}r Informatik}, address = {Bonn}, isbn = {978-3-88579-720-3}, issn = {1617-5468}, doi = {10.18420/inf2022_103}, pages = {1203 -- 1209}, year = {2022}, abstract = {Open Data impliziert die freie Zug{\"a}nglichkeit, Verf{\"u}gbarkeit und Wiederverwendbarkeit von Datens{\"a}tzen. Obwohl hochwertige Datens{\"a}tze {\"o}ffentlich verf{\"u}gbar sind, ist der Zugang zu diesen und die Transparenz {\"u}ber die Formate nicht immer gegeben. Dies mindert die optimale Nutzung des Potenzials zur Wertsch{\"o}pfung, trotz der vorherrschenden Einigkeit {\"u}ber ihre Chancen. Denn Open Data erm{\"o}glicht das Vorantreiben von Compliance-Themen wie Transparenz und Rechenschaftspflicht bis hin zur F{\"o}rderung von Innovationen. Die Nutzung von Open Data erfordert Mut und eine gemeinsame Anstrengung verschiedener Akteure und Branchen. Im Rahmen des vorliegenden Beitrags werden auf Grundlage des Design Science-Ansatzes eine Open Data Capability Map sowie darauf aufbauend eine Datenarchitektur f{\"u}r Open Data in der Luftfahrtindustrie an einem Beispiel entwickelt.}, language = {de} } @inproceedings{VladovaUllrichSultanowetal.2023, author = {Vladova, Gergana and Ullrich, Andr{\´e} and Sultanow, Eldar and Tobolla, Marinho and Sebrak, Sebastian and Czarnecki, Christian and Brockmann, Carsten}, title = {Visual analytics for knowledge management}, series = {INFORMATIK 2023 - Designing Futures: Zuk{\"u}nfte gestalten}, booktitle = {INFORMATIK 2023 - Designing Futures: Zuk{\"u}nfte gestalten}, publisher = {GI - Gesellschaft f{\"u}r Informatik}, address = {Bonn}, isbn = {978-3-88579-731-9}, issn = {1617-5468}, doi = {10.18420/inf2023_187}, pages = {1851 -- 1870}, year = {2023}, abstract = {The management of knowledge in organizations considers both established long-term processes and cooperation in agile project teams. Since knowledge can be both tacit and explicit, its transfer from the individual to the organizational knowledge base poses a challenge in organizations. This challenge increases when the fluctuation of knowledge carriers is exceptionally high. Especially in large projects in which external consultants are involved, there is a risk that critical, company-relevant knowledge generated in the project will leave the company with the external knowledge carrier and thus be lost. In this paper, we show the advantages of an early warning system for knowledge management to avoid this loss. In particular, the potential of visual analytics in the context of knowledge management systems is presented and discussed. We present a project for the development of a business-critical software system and discuss the first implementations and results.}, language = {en} } @article{OertelBung2021, author = {Oertel, Mario and Bung, Daniel Bernhard}, title = {Hochwasserschutz - eine Aufgabe f{\"u}r eine nachhaltige Wasserwirtschaft}, series = {Wasserwirtschaft}, volume = {111}, journal = {Wasserwirtschaft}, number = {9-10}, publisher = {Springer Vieweg}, address = {Wiesbaden}, issn = {0043-0978}, pages = {3 -- 19}, year = {2021}, language = {de} } @incollection{SchultLosseCzarneckietal.2023, author = {Schult, Prince Garcia and Losse, Ann-Kathrin and Czarnecki, Christian and Sultanow, Eldar}, title = {Proposing a Framework to address the Sustainable Development Goals}, series = {EnviroInfo 2023}, booktitle = {EnviroInfo 2023}, publisher = {GI - Gesellschaft f{\"u}r Informatik}, address = {Bonn}, isbn = {978-3-88579-736-4}, issn = {1617-5468}, doi = {10.18420/env2023-022}, pages = {243 -- 249}, year = {2023}, abstract = {Reducing poverty, protecting the planet, and improving life on earth for everyone are the essential goals of the "2030 Agenda for Sustainable Development"committed by the United Nations (UN). Achieving those goals will require technological innovation as well as their implementation in almost all areas of our business and day-to-day life. This paper proposes a high-level framework that collects and structures different uses cases addressing the goals defined by the UN. Hence, it contributes to the discussion by proposing technical innovations that can be used to achieve those goals. As an example, the goal "Climate Action{\"i}s discussed in detail by describing use cases related to tackling biodiversity loss in order to conservate ecosystems.}, language = {en} } @article{Bung2024, author = {Bung, Daniel Bernhard}, title = {Kamerabasierte Fließtiefen- und Geschwindigkeitsmessungen}, series = {Wasserwirtschaft}, volume = {114}, journal = {Wasserwirtschaft}, number = {4}, publisher = {Springer Vieweg}, address = {Wiesbaden}, issn = {0043-0978}, pages = {47 -- 53}, year = {2024}, abstract = {In der wasserbaulichen Forschung werden neben klassischen Messinstrumenten zunehmend kamerabasierte Verfahren genutzt. Diese erlauben neben der Bestimmung von Fließgeschwindigkeiten auch die Detektion der freien Wasseroberfl{\"a}che oder zeitliche Vermessung von Kolken. Durch die hohen r{\"a}umlichen und zeitlichen Aufl{\"o}sungen, welche neueste Kamerasensoren liefern, k{\"o}nnen neue Erkenntnisse in turbulenten, komplexen Str{\"o}mungen gewonnen werden. Auch in der Praxis k{\"o}nnen diese Verfahren mit geringem Aufwand wichtige Daten liefern.}, language = {de} } @book{Czarnecki2023, author = {Czarnecki, Christian}, title = {Angewandte Forschung in der Wirtschaftsinformatik 2023 : Tagungsband zur 36. AKWI-Jahrestagung}, editor = {Czarnecki, Christian and L{\"u}bbe, Alexander and Meister, Vera G. and M{\"u}ller, Christian and Steglich, Mike and Walther, Mathias}, organization = {Arbeitskreis Wirtschaftsinformatik an Hochschulen f{\"u}r Angewandte Wissenschaften im deutschsprachigen Raum (AKWI)}, doi = {10.15771/1794}, pages = {214 Seiten}, year = {2023}, abstract = {Beitr{\"a}ge der Fachtagung „Angewandte Forschung in der Wirtschaftsinformatik - Zukunft gestalten" im Rahmen der 36. Jahrestagung des Arbeitskreises Wirtschaftsinformatik an Hochschulen f{\"u}r Angewandte Wissenschaften (AKWI) vom 11. bis 13.09.2023 an der Technischen Hochschule Wildau}, language = {de} } @inproceedings{TreulingCzarneckiWolf2023, author = {Treuling, Clemens and Czarnecki, Christian and Wolf, Martin}, title = {Projekt WiLMo - Wirtschaftsinformatik Lehr- und Lernmodule}, series = {Angewandte Forschung in der Wirtschaftsinformatik 2023 : Tagungsband zur 36. AKWI-Jahrestagung}, booktitle = {Angewandte Forschung in der Wirtschaftsinformatik 2023 : Tagungsband zur 36. AKWI-Jahrestagung}, pages = {161 -- 169}, year = {2023}, abstract = {Die potenziellen Auswirkungen der Digitalisierung auf die Lehre sind seit langem Gegenstand ausf{\"u}hrlicher Diskussionen innerhalb der Wirtschaftsinformatik (WI) (z. B. in Auth et al. 2021, Barton et al. 2019, Klotz et al. 2019). Nicht zuletzt der in nahezu allen Wirtschaftszweigen bestehende Mangel an qualifizierten Fachkr{\"a}ften lenkt den Diskurs auf einen verbesserten Zugang zu Bildung und gleichen Bildungschancen. Aus dieser Vision heraus und dem Schub der Digitalisierung entstehen Bildungskonzepte wie Open Educational Resources (OER), die gesellschaftlichen Problemen, wie dem des Fachkr{\"a}ftemangels, entgegenwirken sollen. Im Rahmen dieses Kurzbeitrags wird das Projekt WiLMo - "Wirtschaftsinformatik Lehr- und Lernmodule" vorgestellt. WiLMo wird im Rahmen von OERContent.nrw unter Beteiligung von sechs Hochschulen entwickelt und gef{\"o}rdert. Alle Projektbeteiligten arbeiten gemeinsam daran, einheitliche digitale Lehr- und Lernmaterialien im OER-Format f{\"u}r die Kernmodule der Wirtschaftsinformatik zu entwickeln und in garantiert hoher Qualit{\"a}t zur Verf{\"u}gung zu stellen.}, language = {de} } @phdthesis{Bung2023, author = {Bung, Daniel Bernhard}, title = {Imaging techniques for investigation of free-surface flows in hydraulic laboratories}, doi = {10.25926/BUW/0-172}, pages = {XXIII, 218 Seiten}, year = {2023}, abstract = {This thesis aims at the presentation and discussion of well-accepted and new imaging techniques applied to different types of flow in common hydraulic engineering environments. All studies are conducted in laboratory conditions and focus on flow depth and velocity measurements. Investigated flows cover a wide range of complexity, e.g. propagation of waves, dam-break flows, slightly and fully aerated spillway flows as well as highly turbulent hydraulic jumps. Newimagingmethods are compared to different types of sensorswhich are frequently employed in contemporary laboratory studies. This classical instrumentation as well as the general concept of hydraulic modeling is introduced to give an overview on experimental methods. Flow depths are commonly measured by means of ultrasonic sensors, also known as acoustic displacement sensors. These sensors may provide accurate data with high sample rates in case of simple flow conditions, e.g. low-turbulent clear water flows. However, with increasing turbulence, higher uncertainty must be considered. Moreover, ultrasonic sensors can provide point data only, while the relatively large acoustic beam footprint may lead to another source of uncertainty in case of relatively short, highly turbulent surface fluctuations (ripples) or free-surface air-water flows. Analysis of turbulent length and time scales of surface fluctuations from point measurements is also difficult. Imaging techniques with different dimensionality, however, may close this gap. It is shown in this thesis that edge detection methods (known from computer vision) may be used for two-dimensional free-surface extraction (i.e. from images taken through transparant sidewalls in laboratory flumes). Another opportunity in hydraulic laboratory studies comes with the application of stereo vision. Low-cost RGB-D sensors can be used to gather instantaneous, three-dimensional free-surface elevations, even in flows with very high complexity (e.g. aerated hydraulic jumps). It will be shown that the uncertainty of these methods is of similar order as for classical instruments. Particle Image Velocimetry (PIV) is a well-accepted and widespread imaging technique for velocity determination in laboratory conditions. In combination with high-speed cameras, PIV can give time-resolved velocity fields in 2D/3D or even as volumetric flow fields. PIV is based on a cross-correlation technique applied to small subimages of seeded flows. The minimum size of these subimages defines the maximum spatial resolution of resulting velocity fields. A derivative of PIV for aerated flows is also available, i.e. the so-called Bubble Image Velocimetry (BIV). This thesis emphasizes the capacities and limitations of both methods, using relatively simple setups with halogen and LED illuminations. It will be demonstrated that PIV/BIV images may also be processed by means of Optical Flow (OF) techniques. OF is another method originating from the computer vision discipline, based on the assumption of image brightness conservation within a sequence of images. The Horn-Schunck approach, which has been first employed to hydraulic engineering problems in the studies presented herein, yields dense velocity fields, i.e. pixelwise velocity data. As discussed hereinafter, the accuracy of OF competes well with PIV for clear-water flows and even improves results (compared to BIV) for aerated flow conditions. In order to independently benchmark the OF approach, synthetic images with defined turbulence intensitiy are used. Computer vision offers new opportunities that may help to improve the understanding of fluid mechanics and fluid-structure interactions in laboratory investigations. In prototype environments, it can be employed for obstacle detection (e.g. identification of potential fish migration corridors) and recognition (e.g. fish species for monitoring in a fishway) or surface reconstruction (e.g. inspection of hydraulic structures). It can thus be expected that applications to hydraulic engineering problems will develop rapidly in near future. Current methods have not been developed for fluids in motion. Systematic future developments are needed to improve the results in such difficult conditions.}, language = {en} } @article{MuesgenanntKoersMcNeilRadchenkoetal.2023, author = {Mues genannt Koers, Lucas and McNeil, S. W. and Radchenko, V. and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Production of Co-58m in a siphon-style liquid target on a medical cyclotron}, volume = {195}, number = {Art. 110734}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0969-8043}, doi = {10.1016/j.apradiso.2023.110734}, year = {2023}, abstract = {We present the production of 58mCo on a small, 13 MeV medical cyclotron utilizing a siphon style liquid target system. Different concentrated iron(III)-nitrate solutions of natural isotopic distribution were irradiated at varying initial pressures and subsequently separated by solid phase extraction chromatography. The radio cobalt (58m/gCo and 56Co) was successfully produced with saturation activities of (0.35 ± 0.03) MBq μA-1 for 58mCo with a separation recovery of (75 ± 2) \% of cobalt after one separation step utilizing LN-resin.}, language = {en} } @article{MuesgenanntKoersPrevostPaulssenetal.2023, author = {Mues genannt Koers, Lucas and Prevost, David and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Density reduction effects on the production of [11C]CO2 in Nb-body targets on a medical cyclotron}, volume = {199}, number = {Art. 110911}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.apradiso.2023.110911}, year = {2023}, abstract = {Medical isotope production of 11C is commonly performed in gaseous targets. The power deposition of the proton beam during the irradiation decreases the target density due to thermodynamic mixing and can cause an increase of penetration depth and divergence of the proton beam. In order to investigate the difference how the target-body length influences the operation conditions and the production yield, a 12 cm and a 22 cm Nb-target body containing N2/O2 gas were irradiated using a 13 MeV proton cyclotron. It was found that the density reduction has a large influence on the pressure rise during irradiation and the achievable radioactive yield. The saturation activity of [11C]CO2 for the long target (0.083 Ci/μA) is about 10\% higher than in the short target geometry (0.075 Ci/μA).}, language = {en} } @article{DroopChenRadfordetal.2023, author = {Droop, Philipp and Chen, Shaohuang and Radford, Melissa J. and Paulßen, Elisabeth and Gates, Byron D. and Reilly, Raymond M. and Radchenko, Valery and Hoehr, Cornelia}, title = {Synthesis of 197m/gHg labelled gold nanoparticles for targeted radionuclide therapy}, series = {Radiochimica Acta}, volume = {111}, journal = {Radiochimica Acta}, number = {10}, publisher = {De Gruyter}, address = {Berlin [u.a.]}, issn = {2193-3405}, doi = {10.1515/ract-2023-0144}, pages = {773 -- 779}, year = {2023}, abstract = {Meitner-Auger-electron emitters have a promising potential for targeted radionuclide therapy of cancer because of their short range and the high linear energy transfer of Meitner-Auger-electrons (MAE). One promising MAE candidate is 197m/gHg with its half-life of 23.8 h and 64.1 h, respectively, and high MAE yield. Gold nanoparticles (AuNPs) that are labelled with 197m/gHg could be a helpful tool for radiation treatment of glioblastoma multiforme when infused into the surgical cavity after resection to prevent recurrence. To produce such AuNPs, 197m/gHg was embedded into pristine AuNPs. Two different syntheses were tested starting from irradiated gold containing trace amounts of 197m/gHg. When sodium citrate was used as reducing agent, no 197m/gHg labelled AuNPs were formed, but with tannic acid, 197m/gHg labeled AuNPs were produced. The method was optimized by neutralizing the pH (pH = 7) of the Au/197m/gHg solution, which led to labelled AuNPs with a size of 12.3 ± 2.0 nm as measured by transmission electron microscopy. The labelled AuNPs had a concentration of 50 μg (gold)/mL with an activity of 151 ± 93 kBq/mL (197gHg, time corrected to the end of bombardment).}, language = {en} } @inproceedings{BergmannGraebenerWildetal.2019, author = {Bergmann, Kevin and Gr{\"a}bener, Josefine and Wild, Dominik and Ulfers, H. and Czupalla, Markus}, title = {Study on thermal stabilization of a GEO-stationary telescope baffling system by integral application of phase change material}, series = {International Conference on Environmental Systems}, booktitle = {International Conference on Environmental Systems}, pages = {1 -- 14}, year = {2019}, abstract = {The utilization of phase change material (PCM) for latent heat storage and thermal control of spacecraft has been demonstrated in the past in few missions only. One limiting factor was the fact that all concepts developed so far envisioned the PCM to be applied as an additional capacitor, encapsulated in its own housing, leading to mass, efficiency and accommodation challenges. Recently, the application of PCM within the scan cavity of a GEOS type satellite has been suggested, in order to tackle thermal issues due to direct sun intrusion (Choi, M., 2014). However, the application of PCM in such complex mechanical structures is extremely challenging. A new concept to tackle this issue is currently under development at the FH Aachen University of Applied Sciences. The concept "Infused Thermal Solutions (ITS)" is based on the idea to 3D print metallic structures in their regular functional shape, but double walled with internal lattice support structures, allowing the infusion of a PCM layer directly into the voids and eliminating the need for additional parts and interfaces. Together with OHB System, FH Aachen theoretically studied the application of this technology to the Meteosat Third Generation (MTG) Infra-Red Sounder (IRS) instrument. The study focuses on the scan cavity and entrance baffling assembly (EBA) of the IRS. It consists of thermal analyses, 3D-redesign and bread boarding of a scaled and PCM infused EBA version. In the thermal design of the alternative EBA, PCM was applied directly into the EBA, simulating the worst hot case sun intrusion of the mission. By applying 4kg of PCM (to a 60kg baffle) the EBA temperature excursions during sun intrusion were limited from 140K to 30K, leading to a significant thermo-opto-elastic performance gain. This paper introduces the ITS concept development status.}, language = {en} } @misc{GamgamiCzupallaGarciaetal.2016, author = {Gamgami, Farid and Czupalla, Markus and Garcia, Antonio and Agnolon, David}, title = {From planetary transits to spacecraft design: achieving PLATO's pointing performance}, series = {A7. Symposium on technological Requirement for future space astronomy and solar-system science missions}, journal = {A7. Symposium on technological Requirement for future space astronomy and solar-system science missions}, year = {2016}, abstract = {In the last decades, several hundred exoplanets could be detected thanks to space-based observatories, namely CNES' COROT and NASA's Kepler. To expand this quest ESA plans to launch CHEOPS as the f irst small class mission in the cosmic visions program (S1) and PLATO as the 3rd medium class mission, so called M3 . PLATO's primary objective is the detection of Earth like Exoplanets orbiting solar type stars in the habitable zone and characterisation of their bulk properties. This is possible by precise lightcurve measurement via 34 cameras. That said it becomes obvious that accurate pointing is key to achieve the required signal to noise ratio for positive transit detection. The paper will start with a comprehensive overview of PLATO's mission objectives and mission architecture. Hereafter, special focus will be devoted to PLATO's pointing requirements. Understanding the very nature of PLATO's pointing requirements is essential to derive a design baseline to achieve the required performance. The PLATO frequency domain is of particular interest, ranging from 40 mHz to 3 Hz. Due to the very different time-scales involved, the spectral pointing requirement is decomposed into a high frequency part dominated by the attitude control system and the low frequency part dominated by the thermo-elastic properties of the spacecraft's configuration. Both pose stringent constraints on the overall design as well as technology properties to comply with the derived requirements and thus assure a successful mission.}, language = {en} } @inproceedings{BungLangohrWaldenberger2023, author = {Bung, Daniel Bernhard and Langohr, Phillip and Waldenberger, Lisa}, title = {Influence of cycle number in CFD studies of labyrinth weirs}, series = {Proceedings of the 40th IAHR World Congress (Vienna, 2023)}, booktitle = {Proceedings of the 40th IAHR World Congress (Vienna, 2023)}, editor = {Habersack, Helmut and Tritthart, Michael}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, address = {Madrid}, isbn = {978-90-833476-1-5}, issn = {L 2521-7119 (online)}, doi = {10.3850/978-90-833476-1-5_iahr40wc-p0531-cd}, year = {2023}, abstract = {The major advantage of labyrinth weirs over linear weirs is hydraulic efficiency. In hydraulic modeling efforts, this strength contrasts with limited pump capacity as well as limited computational power for CFD simulations. For the latter, reducing the number of investigated cycles can significantly reduce necessary computational time. In this study, a labyrinth weir with different cycle numbers was investigated. The simulations were conducted in FLOW-3D HYDRO as a Large Eddy Simulation. With a mean deviation of 1.75 \% between simulated discharge coefficients and literature design equations, a reasonable agreement was found. For downstream conditions, overall consistent results were observed as well. However, the orientation of labyrinth weirs with a single cycle should be chosen carefully under consideration of the individual research purpose.}, language = {en} } @misc{EcclestonDrummondMiddletonetal.2020, author = {Eccleston, Paul and Drummond, Rachel and Middleton, Kevin and Bishop, Georgia and Caldwell, Andrew and Desjonqueres, Lucile and Tosh, Ian and Cann, Nick and Crook, Martin and Hills, Matthew and Pearson, Chris and Simpson, Caroline and Stamper, Richard and Tinetti, Giovanna and Pascale, Enzo and Swain, Mark and Holmes, Warren A. and Wong, Andre and Puig, Ludovic and Pilbratt, G{\"o}ran and Linder, Martin and Boudin, Nathalie and Ertel, Hanno and Gambicorti, Lisa and Halain, Jean-Philippe and Pace, Emanuele and Vilardell, Francesc and G{\´o}mez, Jos{\´e} M. and Colom{\´e}, Josep and Amiaux, J{\´e}r{\^o}me and Cara, Christophe and Berthe, Michel and Moreau, Vincent and Morgante, Gianluca and Malaguti, Giuseppe and Alonso, Gustavo and {\´A}lvarez, Javier P. and Ollivier, Marc and Philippon, Anne and Hellin, Marie-Laure and Roose, Steve and Frericks, Martin and Krijger, Matthijs and Rataj, Miroslaw and Wawer, Piotr and Skup, Konrad and Sobiecki, Mateusz and Christian Jessen, Niels and M{\o}ller Pedersen, S{\o}ren and Hargrave, Peter and Griffin, Matt and Ottensamer, Roland and Hunt, Thomas and Rust, Duncan and Saleh, Aymen and Winter, Berend and Focardi, Mauro and Da Deppo, Vania and Zuppella, Paola and Czupalla, Markus}, title = {The ARIEL payload: A technical overview}, series = {Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave}, volume = {11443}, journal = {Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave}, editor = {Lystrup, Makenzie and Perrin, Marshall D. and Batalha, Natalie and Siegler, Nicholas and Tong, Edward C.}, publisher = {SPIE}, address = {Washington}, doi = {10.1117/12.2561478}, pages = {114430Z}, year = {2020}, abstract = {The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next (M4) medium class space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of ~1000 known transiting exoplanets using its metre-class telescope. A three-band photometer and three spectrometers cover the 0.5 µm to 7.8 µm region of the electromagnetic spectrum. This paper gives an overview of the mission payload, including the telescope assembly, the FGS (Fine Guidance System) - which provides both pointing information to the spacecraft and scientific photometry and low-resolution spectrometer data, the ARIEL InfraRed Spectrometer (AIRS), and other payload infrastructure such as the warm electronics, structures and cryogenic cooling systems.}, language = {en} } @misc{GrafSteinhofLotzetal.2009, author = {Graf, Alain-Michel and Steinhof, Rafael and Lotz, Martin and Tippk{\"o}tter, Nils and Kasper, Cornelia and Beutel, Sascha and Ulber, Roland}, title = {Downstream-Processing mit Membranadsorbern zur Isolierung nativer Proteinfraktionen aus Kartoffelfruchtwasser}, series = {Chemie Ingenieur Technik}, volume = {81}, journal = {Chemie Ingenieur Technik}, number = {3}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/cite.200800139}, pages = {267 -- 274}, year = {2009}, abstract = {Bei der St{\"a}rkeproduktion entstehendes Kartoffelfruchtwasser besitzt mit 2 - 3 \% einen hohen Anteil an ern{\"a}hrungsphysiologisch interessanten Proteinen. Die industrielle Gewinnung dieser Proteinfracht liefert jedoch lediglich ein minderwertiges, denaturiertes Produkt. Mit Hilfe der Membranadsorber-Technologie lassen sich aus Kartoffelfruchtwasser unter milden Reaktionsbedingungen native bioaktive Proteinfraktionen gewinnen. Geeignete Trennbedingungen wurden im Labormaßstab entwickelt und in den Technikumsmaßstab {\"u}bertragen. An Anionenaustauscher-Membranadsorbern mit einer Membranfl{\"a}che von 10 000 cm2 wurde eine Patatinhaltige Fraktion (44 kDa) mit Bindungskapazit{\"a}ten von 0,37 mg/cm2 isoliert. Eine niedermolekulare Proteinfraktion mit Protease-Inhibitoren konnte durch Kationenaustauscher-Membranadsorber mit Bindungskapazit{\"a}ten von 1,00 mg/cm2 gewonnen werden. Sie ist f{\"u}r verschiedenste Applikationen in der pharmazeutischen, kosmetischen und der Nahrungsmittelindustrie interessant z. B. f{\"u}r Appetitz{\"u}gler oder muskelaufbauende Proteinpr{\"a}parate. Der Aufreinigung der nativen Proteinfraktionen durch Ultra-/Diafiltration schließt sich die Konfektionierung durch Spr{\"u}htrocknung an. Die bioanalytische Charakterisierung der Produkte belegt die Reinheit und die enzymatische Aktivit{\"a}t sowie die Abreicherung von St{\"o}rkomponenten wie Glykoalkaloide und Polyphenoloxidasen.}, language = {de} } @misc{ReiswichBrandtCzupalla2019, author = {Reiswich, Martin and Brandt, Hannes and Czupalla, Markus}, title = {Passive thermal control by integration of phase change material into additively manufactured structures}, series = {E2. 47th Student conference}, journal = {E2. 47th Student conference}, year = {2019}, abstract = {Optical Instruments require an extremely stable thermal surrounding to prevent loss of data quality by misalignments of the instrument components resulting from material deformation due to temperature f luctuations (e.g. from solar intrusion). Phase Change Material (PCM) can be applied as a thermal damper to achieve a more uniform temperature distribution. The challenge of this method is, among others, the integration of PCM into affected areas. If correctly designed, incoming heat is latently absorbed during phase change of the PCM, i.e. the temperature of a structure remains almost constant. In a cold phase, the heat during phase change is released again latently until the PCM returns to its original state of aggregation. Thus, the structure is thermally stabilized. At FH Aachen- University of Applied Sciences research is conducted to apply PCM directly into the structures of affected components (baffles, optical benches, electronic boxes, etc.). Through the application of Additive Manufacturing, the necessary voids are directly printed into these structures and filled later with PCM. Additive Manufacturing enables complex structures that would not have been possible with conservative manufacturing methods. A corresponding Breadboard was developed and manufactured by Selective Laser Melting (SLM). The current state of research includes the handling and analysis of the Breadboard, tests and a correlation of the thermal model. The results have shown analytically and practically that it is possible to use PCM as an integral part of the structure as a thermal damper. The results serve as a basis for the further development of the technology, which should maximize performance and enable the integration of PCM into much more complex structures.}, language = {en} } @article{Czupalla2017, author = {Czupalla, Markus}, title = {Ein Garten im Weltraum}, series = {Spektrum der Wissenschaft}, journal = {Spektrum der Wissenschaft}, publisher = {Spektrum-der-Wiss.-Verl.-Ges.}, address = {Heidelberg}, year = {2017}, language = {de} } @article{SaretzkiBergmannDahmannetal.2021, author = {Saretzki, Charlotte and Bergmann, Ole and Dahmann, Peter and Janser, Frank and Keimer, Jona and Machado, Patricia and Morrison, Audry and Page, Henry and Pluta, Emil and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Are small airplanes safe with regards to COVID-19 transmission?}, series = {Journal of Travel Medicine}, volume = {28}, journal = {Journal of Travel Medicine}, number = {7}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1708-8305}, doi = {10.1093/jtm/taab105}, year = {2021}, language = {en} }