@inproceedings{SattlerChicoCaminosUerlingsetal.2020, author = {Sattler, Johannes Christoph and Chico Caminos, Ricardo Alexander and {\"U}rlings, Nicolas and Dutta, Siddharth and Ruiz, Victor and Kalogirou, Soteris and Ktistis, Panayiotis and Agathokleous, Rafaela and Jung, Christian and Alexopoulos, Spiros and Atti, Vikrama Naga Babu and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Operational experience and behaviour of a parabolic trough collector system with concrete thermal energy storage for process steam generation in Cyprus}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029278}, pages = {140004-1 -- 140004-10}, year = {2020}, abstract = {As part of the transnational research project EDITOR, a parabolic trough collector system (PTC) with concrete thermal energy storage (C-TES) was installed and commissioned in Limassol, Cyprus. The system is located on the premises of the beverage manufacturer KEAN Soft Drinks Ltd. and its function is to supply process steam for the factory's pasteurisation process [1]. Depending on the factory's seasonally varying capacity for beverage production, the solar system delivers between 5 and 25 \% of the total steam demand. In combination with the C-TES, the solar plant can supply process steam on demand before sunrise or after sunset. Furthermore, the C-TES compensates the PTC during the day in fluctuating weather conditions. The parabolic trough collector as well as the control and oil handling unit is designed and manufactured by Protarget AG, Germany. The C-TES is designed and produced by CADE Soluciones de Ingenier{\´i}a, S.L., Spain. In the focus of this paper is the description of the operational experience with the PTC, C-TES and boiler during the commissioning and operation phase. Additionally, innovative optimisation measures are presented.}, language = {en} } @inproceedings{SattlerAttiAlexopoulosetal.2022, author = {Sattler, Johannes Christoph and Atti, Vikrama Naga Babu and Alexopoulos, Spiros and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf and Dutta, Siddharth and Kioutsioukis, Ioannis}, title = {DNI forecast tool for the smart operation of a parabolic trough collector system with concrete thermal energy storage: Theory, results and outlook}, series = {SolarPACES 2022 conference proceedings}, booktitle = {SolarPACES 2022 conference proceedings}, number = {1}, publisher = {TIB Open Publishing}, address = {Hannover}, issn = {2751-9899 (online)}, doi = {10.52825/solarpaces.v1i.731}, pages = {9 Seiten}, year = {2022}, abstract = {This work presents a basic forecast tool for predicting direct normal irradiance (DNI) in hourly resolution, which the Solar-Institut J{\"u}lich (SIJ) is developing within a research project. The DNI forecast data shall be used for a parabolic trough collector (PTC) system with a concrete thermal energy storage (C-TES) located at the company KEAN Soft Drinks Ltd in Limassol, Cyprus. On a daily basis, 24-hour DNI prediction data in hourly resolution shall be automatically produced using free or very low-cost weather forecast data as input. The purpose of the DNI forecast tool is to automatically transfer the DNI forecast data on a daily basis to a main control unit (MCU). The MCU automatically makes a smart decision on the operation mode of the PTC system such as steam production mode and/or C-TES charging mode. The DNI forecast tool was evaluated using historical data of measured DNI from an on-site weather station, which was compared to the DNI forecast data. The DNI forecast tool was tested using data from 56 days between January and March 2022, which included days with a strong variation in DNI due to cloud passages. For the evaluation of the DNI forecast reliability, three categories were created and the forecast data was sorted accordingly. The result was that the DNI forecast tool has a reliability of 71.4 \% based on the tested days. The result fulfils SIJ's aim to achieve a reliability of around 70 \%, but SIJ aims to still improve the DNI forecast quality.}, language = {en} } @article{SchoeningArzdorfMulchandanietal.2003, author = {Sch{\"o}ning, Michael Josef and Arzdorf, Michael and Mulchandani, P. and Chen, W. and Mulchandani, A.}, title = {Towards a capacitive enzyme sensor for direct determination of organophosphorus pesticides: Fundamentals studies and aspects of development}, series = {Sensors. 3 (2003), H. 6}, journal = {Sensors. 3 (2003), H. 6}, isbn = {1424-8220}, pages = {119 -- 127}, year = {2003}, language = {en} } @article{SchoeningArzdorfMulchandanietal.2003, author = {Sch{\"o}ning, Michael Josef and Arzdorf, Michael and Mulchandani, P. and Chen, W. and Mulchandani, A.}, title = {A capacitive field-effect sensor for the direct determination of organophosphorus pesticides}, series = {Sensors and Actuators B. 91 (2003), H. 1-3}, journal = {Sensors and Actuators B. 91 (2003), H. 1-3}, isbn = {0925-4005}, pages = {92 -- 97}, year = {2003}, language = {en} } @article{MikuckiSchulerDigeletal.2023, author = {Mikucki, Jill Ann and Schuler, C. G. and Digel, Ilya and Kowalski, Julia and Tuttle, M. J. and Chua, Michelle and Davis, R. and Purcell, Alicia and Ghosh, D. and Francke, G. and Feldmann, M. and Espe, C. and Heinen, Dirk and Dachwald, Bernd and Clemens, Joachim and Lyons, W. B. and Tulaczyk, S.}, title = {Field-Based planetary protection operations for melt probes: validation of clean access into the blood falls, antarctica, englacial ecosystem}, series = {Astrobiology}, volume = {23}, journal = {Astrobiology}, number = {11}, publisher = {Liebert}, address = {New York, NY}, issn = {1557-8070 (online)}, doi = {10.1089/ast.2021.0102}, pages = {1165 -- 1178}, year = {2023}, abstract = {Subglacial environments on Earth offer important analogs to Ocean World targets in our solar system. These unique microbial ecosystems remain understudied due to the challenges of access through thick glacial ice (tens to hundreds of meters). Additionally, sub-ice collections must be conducted in a clean manner to ensure sample integrity for downstream microbiological and geochemical analyses. We describe the field-based cleaning of a melt probe that was used to collect brine samples from within a glacier conduit at Blood Falls, Antarctica, for geomicrobiological studies. We used a thermoelectric melting probe called the IceMole that was designed to be minimally invasive in that the logistical requirements in support of drilling operations were small and the probe could be cleaned, even in a remote field setting, so as to minimize potential contamination. In our study, the exterior bioburden on the IceMole was reduced to levels measured in most clean rooms, and below that of the ice surrounding our sampling target. Potential microbial contaminants were identified during the cleaning process; however, very few were detected in the final englacial sample collected with the IceMole and were present in extremely low abundances (∼0.063\% of 16S rRNA gene amplicon sequences). This cleaning protocol can help minimize contamination when working in remote field locations, support microbiological sampling of terrestrial subglacial environments using melting probes, and help inform planetary protection challenges for Ocean World analog mission concepts.}, language = {en} } @article{MansurovJandosovKerimkulovaetal.2014, author = {Mansurov, Zulkhair A. and Jandosov, J. M. and Kerimkulova, A. R. and Azat, S. and Zhubanova, Azhar Achmet and Digel, Ilya and Savistkaya, I. S. and Akimbekov, Nuraly S. and Kistaubaeva, A. S.}, title = {Nanostructured carbon materials for biomedical use}, series = {Eurasian chemico-technological journal : quarterly journal of the International Higher Education Academy of Sciences}, volume = {15 (2013)}, journal = {Eurasian chemico-technological journal : quarterly journal of the International Higher Education Academy of Sciences}, number = {3}, publisher = {Institute of Combustion Problems}, address = {Almaty}, issn = {1562-3920}, doi = {10.18321/ectj224}, pages = {209 -- 217}, year = {2014}, abstract = {One of the priority trends of carbon nanotechnology is creation of nanocomposite systems. Such carbon nanostructured composites were produced using - raw materials based on the products of agricultural waste, such as grape stones, apricot stones, rice husk. These products have a - wide spectrum of application and can be obtained in large quantities. The Institute of Combustion Problems has carried out the work on synthesis of the nanostructured carbon sorbents for multiple applications including the field of biomedicine. The article presents the data on the synthesis and physico-chemical properties of carbonaceous sorbents using physicochemical methods of investigation: separation and purification of biomolecules; isolation of phytohormone - fusicoccin; adsorbent INGO-1 in the form of an adsorption column for blood detoxification, oral (entero) sorbent - INGO-2; the study of efferent and probiotic properties and sorption activity in regard to the lipopolysaccharide (LPS), new biocomposites - based on carbonized rice husk (CRH) and cellular microorganisms; the use of CRH in wound treatment. A new material for blood detoxication (INGO-1) has been obtained. Adsorption of p-cresyl sulfate and indoxyl sulfate has shown that active carbon adsorbent can remove clinically significant level of p-cresyl sulfate and indoxyl sulfate from human plasma. Enterosorbent INGO-2 possesses high adsorption activity in relation to Gram-negative bacteria and their endotoxins. INGO-2 slows down the growth of conditionally pathogenic microorganisms, without having a negative effect on bifido and lactobacteria. The use of enterosorbent INGO-2 for sorption therapy may provide a solution to a complex problem - detoxication of the digestive tract and normalization of the intestinal micro ecology. The immobilized probiotic called "Riso-lact" was registered at the Ministry of Health of the Republic of Kazakhstan as a biologically active food additive. The developed technology is patented and provides production of the medicine in the form of freeze-dried biomass immobilized in vials.}, language = {en} } @article{AuffrayBruyndonckxDevroedeetal.2004, author = {Auffray, Etiennette and Bruyndonckx, P. and Devroede, O. and Fedorov, A. and Ziemons, Karl}, title = {The ClearPET project}, series = {Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {527}, journal = {Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {1-2}, isbn = {0168-9002}, pages = {171 -- 174}, year = {2004}, abstract = {The Crystal Clear Collaboration has designed and is building a high-resolution small animal PET scanner. The design is based on the use of the Hamamatsu R7600-M64 multi-anode photomultiplier tube and a LSO/LuYAP phoswich matrix with one to one coupling between the crystals and the photo-detector. The complete system will have 80 PM tubes in four rings with an inner diameter of 137 mm and an axial field of view of 110 mm. The PM pulses are digitized by free-running ADCs and digital data processing determines the gamma energy, the phoswich layer and even the pulse arrival time. Single gamma interactions are recorded and coincidences are found by software. The gantry allows rotation of the detector modules around the field of view. Simulations, and measurements a 2×4 module test set-up predict a spatial resolution of 1.5 mm in the centre of the field of view and a sensitivity of 5.9\% for a point source in the centre of the field of view.}, language = {en} } @article{MossetDevroedeKriegueretal.2006, author = {Mosset, Jean-Baptiste and Devroede, Olivier and Krieguer, Magalie and Rey, M. and Vieira, J.-M. and Jung, J. H. and Kuntner, Claudia and Streun, Matthias and Ziemons, Karl and Auffray, Etiennette and Sempere-Roldan, P. and Lecoq, Paul and Bruyndonckx, Peter and Loude, Jean-Fran{\c{c}}ois and Tavernier, Stefaan and Morel, Christian}, title = {Development of an optimized LSO/LuYAP phoswich detector head for the Lausanne ClearPET demonstrator}, series = {IEEE Transactions on Nuclear Science}, volume = {53}, journal = {IEEE Transactions on Nuclear Science}, number = {1}, isbn = {0018-9499}, pages = {25 -- 29}, year = {2006}, abstract = {This paper describes the LSO/LuYAP phoswich detector head developed for the ClearPET small animal PET scanner demonstrator that is under construction in Lausanne within the Crystal Clear Collaboration. The detector head consists of a dual layer of 8×8 LSO and LuYAP crystal arrays coupled to a multi-anode photomultiplier tube (Hamamatsu R7600-M64). Equalistion of the LSO/LuYAP light collection is obtained through partial attenuation of the LSO scintillation light using a thin aluminum deposit of 20-35 nm on LSO and appropriate temperature regulation of the phoswich head between 30°C to 60°C. At 511keV, typical FWHM energy resolutions of the pixels of a phoswich head amounts to (28±2)\% for LSO and (25±2)\% for LuYAP. The LSO versus LuYAP crystal identification efficiency is better than 98\%. Six detector modules have been mounted on a rotating gantry. Axial and tangential spatial resolutions were measured up to 4 cm from the scanner axis and compared to Monte Carlo simulations using GATE. FWHM spatial resolution ranges from 1.3 mm on axis to 2.6 mm at 4 cm from the axis.}, language = {en} } @article{ZiemonsAchtenAuffrayetal.2004, author = {Ziemons, Karl and Achten, R. and Auffray, Etiennette and M{\"u}ller-Veggian, Mattea}, title = {The ClearPET™ neuro scanner: a dedicated LSO/LuYAP phoswich small animal PET scanner}, series = {2004 IEEE Nuclear Science Symposium conference record : Nuclear Science Symposium, Medical Imaging Conference ; 16 - 22 October 2004, Rome, Italy ; [including the Symposium on Nuclear Power System (SNPS), 14th Room Temperature Semiconductor X- and Gamma-Ray Detectors Workshop and special focus workshops] / NPSS, Nuclear \& Plasma Sciences Society. Guest ed.: J. Anthony Seibert}, journal = {2004 IEEE Nuclear Science Symposium conference record : Nuclear Science Symposium, Medical Imaging Conference ; 16 - 22 October 2004, Rome, Italy ; [including the Symposium on Nuclear Power System (SNPS), 14th Room Temperature Semiconductor X- and Gamma-Ray Detectors Workshop and special focus workshops] / NPSS, Nuclear \& Plasma Sciences Society. Guest ed.: J. Anthony Seibert}, publisher = {IEEE Operations Center}, address = {Piscataway, NJ}, issn = {1082-3654}, pages = {2430 -- 2433}, year = {2004}, language = {en} }