@article{KaramanidisAlbrachtBraunsteinetal.2011, author = {Karamanidis, Kiros and Albracht, Kirsten and Braunstein, Bjoern and Catala, Maria Moreno and Goldmann, Jan-Peter and Br{\"u}ggemann, Gert-Peter}, title = {Lower leg musculoskeletal geometry and sprint performance}, series = {Gait and Posture}, volume = {34}, journal = {Gait and Posture}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2011.03.009}, pages = {138 -- 141}, year = {2011}, abstract = {The purpose of this study was to investigate whether sprint performance is related to lower leg musculoskeletal geometry within a homogeneous group of highly trained 100-m sprinters. Using a cluster analysis, eighteen male sprinters were divided into two groups based on their personal best (fast: N = 11, 10.30 ± 0.07 s; slow: N = 7, 10.70 ± 0.08 s). Calf muscular fascicle arrangement and Achilles tendon moment arms (calculated by the gradient of tendon excursion versus ankle joint angle) were analyzed for each athlete using ultrasonography. Achilles tendon moment arm, foot and ankle skeletal geometry, fascicle arrangement as well as the ratio of fascicle length to Achilles tendon moment arm showed no significant (p > 0.05) correlation with sprint performance, nor were there any differences in the analyzed musculoskeletal parameters between the fast and slow sprinter group. Our findings provide evidence that differences in sprint ability in world-class athletes are not a result of differences in the geometrical design of the lower leg even when considering both skeletal and muscular components.}, language = {en} } @article{ArampatzisKaramanidisMademlietal.2009, author = {Arampatzis, Adamantios and Karamanidis, Kiros and Mademli, Lida and Albracht, Kirsten}, title = {Plasticity of the human tendon to short and long-term mechanical loading}, series = {Exercise and Sport Sciences Reviews}, volume = {37}, journal = {Exercise and Sport Sciences Reviews}, number = {2}, issn = {1538-3008}, doi = {10.1097/JES.0b013e31819c2e1d}, pages = {66 -- 72}, year = {2009}, language = {en} } @article{AlbrachtArampatzisBaltzopoulos2008, author = {Albracht, Kirsten and Arampatzis, A. and Baltzopoulos, V.}, title = {Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo}, series = {Journal of Biomechanics}, volume = {41}, journal = {Journal of Biomechanics}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2008.04.020}, pages = {2211 -- 2218}, year = {2008}, language = {en} } @article{ArampatzisKaramanidisAlbracht2007, author = {Arampatzis, Adamantios and Karamanidis, Kiros and Albracht, Kirsten}, title = {Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude}, series = {Journal of Experimental Biology}, volume = {210}, journal = {Journal of Experimental Biology}, number = {15}, issn = {0022-0949}, doi = {10.1242/jeb.003814}, pages = {2743 -- 2753}, year = {2007}, language = {en} } @article{AlbrachtArampatzis2006, author = {Albracht, Kirsten and Arampatzis, Adamantios}, title = {Influence of the mechanical properties of the muscle-tendon unit on force generation in runners with different running economy}, series = {Biological Cybernetics}, volume = {95}, journal = {Biological Cybernetics}, number = {1}, issn = {1432-0770}, doi = {10.1007/s00422-006-0070-z}, pages = {87 -- 96}, year = {2006}, language = {en} } @incollection{AbelBoninAlbrachtetal.2015, author = {Abel, Thomas and Bonin, Dominik and Albracht, Kirsten and Zeller, Sebastian and Burkett, Brendan}, title = {Kinematische Untersuchung der Kurbelbewegung im Handcycling: Entwicklung einer sportartspezifischen Methode}, series = {Behindertensport 1951-2011 : Historische und aktuelle Aspekte im nationalen und internationalen Dialog}, booktitle = {Behindertensport 1951-2011 : Historische und aktuelle Aspekte im nationalen und internationalen Dialog}, publisher = {Meyer \& Meyer}, address = {Aachen}, isbn = {9783898997249}, pages = {82 -- 91}, year = {2015}, language = {de} } @inproceedings{KolditzAlbinAlbrachtetal.2016, author = {Kolditz, Melanie and Albin, Thivaharan and Albracht, Kirsten and Br{\"u}ggemann, Gert-Peter and Abel, Dirk}, title = {Isokinematic leg extension training with an industrial robot}, series = {6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 26-29, 2016. UTown, Singapore}, booktitle = {6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 26-29, 2016. UTown, Singapore}, doi = {10.1109/BIOROB.2016.7523750}, pages = {950 -- 955}, year = {2016}, language = {de} } @inproceedings{KonstantinidisKowalskiMartinezetal.2015, author = {Konstantinidis, K. and Kowalski, Julia and Martinez, C. F. and Dachwald, Bernd and Ewerhart, D. and F{\"o}rstner, R.}, title = {Some necessary technologies for in-situ astrobiology on enceladus}, series = {Proceedings of the International Astronautical Congress}, booktitle = {Proceedings of the International Astronautical Congress}, isbn = {978-151081893-4}, pages = {1354 -- 1372}, year = {2015}, language = {en} } @inproceedings{GoldmannBraunsteinHeinrichetal.2015, author = {Goldmann, Jan-Peter and Braunstein, Bjoern and Heinrich, Kai and Sanno, Maximilian and St{\"a}udle, Benjamin and Ritzdorf, Wolfgang and Br{\"u}ggemann, Gert-Peter and Albracht, Kirsten}, title = {Joint work of the take-off leg during elite high jump}, series = {Proceedings of the 33th International Conference on Biomechanics in Sports (ISBS)}, booktitle = {Proceedings of the 33th International Conference on Biomechanics in Sports (ISBS)}, pages = {3 S.}, year = {2015}, language = {en} } @inproceedings{DroszezSannoGoldmannetal.2016, author = {Droszez, Anna and Sanno, Maximilian and Goldmann, Jan-Peter and Albracht, Kirsten and Br{\"u}ggemann, Gerd-Peter and Braunstein, Bjoern}, title = {Differences between take-off behavior during vertical jumps and two artistic elements}, series = {34th International Conference of Biomechanics in Sport, Tsukuba, Japan, July 18-22, 2016}, booktitle = {34th International Conference of Biomechanics in Sport, Tsukuba, Japan, July 18-22, 2016}, issn = {1999-4168}, pages = {577 -- 580}, year = {2016}, language = {en} } @inproceedings{AbelBoninAlbrachtetal.2010, author = {Abel, Thomas and Bonin, Dominik and Albracht, Kirsten and Zeller, Sebastian and Br{\"u}ggemann, Gert-Peter and Burkett, Brendan and Str{\"u}der, Heiko K.}, title = {Kinematic profile of the elite handcyclist}, series = {28th International Conference on Biomechanics in Sports, Marquette, Michigan, USA, July 19 - 23, 2010}, booktitle = {28th International Conference on Biomechanics in Sports, Marquette, Michigan, USA, July 19 - 23, 2010}, issn = {1999-4168}, pages = {140 -- 141}, year = {2010}, language = {en} } @inproceedings{BraunsteinGoldmannAlbrachtetal.2013, author = {Braunstein, Bjoern and Goldmann, Jan-Peter and Albracht, Kirsten and Sanno, Maximilian and Willwacher, Steffen and Heinrich, Kai and Herrmann, Volker and Br{\"u}ggemann, Gert-Peter}, title = {Joint specific contribution of mechanical power and work during acceleration and top speed in elite sprinters}, series = {31 International Conference on Biomechanics in Sports, Taipei, Taiwan, July 07 - July 22, 2013}, booktitle = {31 International Conference on Biomechanics in Sports, Taipei, Taiwan, July 07 - July 22, 2013}, issn = {1999-4168}, year = {2013}, language = {en} } @article{LanzlKotliar2017, author = {Lanzl, I. and Kotliar, Konstantin}, title = {K{\"o}nnen Anti-VEGF-Injektionen Glaukom oder okul{\"a}re Hypertension verursachen?}, series = {Klinische Monatsbl{\"a}tter f{\"u}r Augenheilkunde}, volume = {234}, journal = {Klinische Monatsbl{\"a}tter f{\"u}r Augenheilkunde}, number = {2}, publisher = {Thieme}, address = {Stuttgart}, issn = {0023-2165}, doi = {10.1055/s-0043-101819}, pages = {191 -- 193}, year = {2017}, language = {de} } @article{HacklWegmannKahmannetal.2017, author = {Hackl, Michael and Wegmann, Kilian and Kahmann, Stephanie Lucina and Heinze, Nicolai and Staat, Manfred and Neiss, Wolfram F. and Scaal, Martin and M{\"u}ller, Lars P.}, title = {Radial shortening osteotomy reduces radiocapitellar contact pressures while preserving valgus stability of the elbow}, series = {Knee Surgery, Sports Traumatology, Arthroscopy}, volume = {25}, journal = {Knee Surgery, Sports Traumatology, Arthroscopy}, number = {7}, publisher = {Springer}, address = {Berlin}, issn = {1433-7347}, doi = {10.1007/s00167-017-4468-z}, pages = {2280 -- 2288}, year = {2017}, language = {en} } @phdthesis{Albracht2010, author = {Albracht, Kirsten}, title = {Influence of mechanical properties of the leg extensor muscletendon units on running economy}, publisher = {Deutsche Sporthochschule K{\"o}ln}, address = {K{\"o}ln}, pages = {X, 1221 Bl. : graph. Darst.}, year = {2010}, language = {en} } @article{KolditzAlbinBrueggemannetal.2016, author = {Kolditz, Melanie and Albin, Thivaharan and Br{\"u}ggemann, Gert-Peter and Abel, Dirk and Albracht, Kirsten}, title = {Robotergest{\"u}tztes System f{\"u}r ein verbessertes neuromuskul{\"a}res Aufbautraining der Beinstrecker}, series = {at - Automatisierungstechnik}, volume = {64}, journal = {at - Automatisierungstechnik}, number = {11}, publisher = {De Gruyter}, address = {Berlin}, issn = {2196-677X}, doi = {10.1515/auto-2016-0044}, pages = {905 -- 914}, year = {2016}, abstract = {Neuromuskul{\"a}res Aufbautraining der Beinstrecker ist ein wichtiger Bestandteil in der Rehabilitation und Pr{\"a}vention von Muskel-Skelett-Erkrankungen. Effektives Training erfordert hohe Muskelkr{\"a}fte, die gleichzeitig hohe Belastungen von bereits gesch{\"a}digten Strukturen bedeuten. Um trainingsinduzierte Sch{\"a}digungen zu vermeiden, m{\"u}ssen diese Kr{\"a}fte kontrolliert werden. Mit heutigen Trainingsger{\"a}ten k{\"o}nnen diese Ziele allerdings nicht erreicht werden. F{\"u}r ein sicheres und effektives Training sollen durch den Einsatz der Robotik, Sensorik, eines Regelkreises sowie Muskel-Skelett-Modellen Belastungen am Zielgewebe direkt berechnet und kontrolliert werden. Auf Basis zweier Vorstudien zu m{\"o}glichen Stellgr{\"o}ßen wird der Aufbau eines robotischen Systems vorgestellt, das sowohl f{\"u}r Forschungszwecke als auch zur Entwicklung neuartiger Trainingsger{\"a}te verwendet werden kann.}, language = {de} } @inproceedings{KolditzAlbrachtFasseetal.2015, author = {Kolditz, Melanie and Albracht, Kirsten and Fasse, Alessandro and Albin, Thivaharan and Br{\"u}ggemann, Gert-Peter and Abel, Dirk}, title = {Evaluation of an industrial robot as a leg press training device}, series = {XV International Symposium on Computer Simulation in Biomechanics July 9th - 11th 2015, Edinburgh, UK}, booktitle = {XV International Symposium on Computer Simulation in Biomechanics July 9th - 11th 2015, Edinburgh, UK}, pages = {41 -- 42}, year = {2015}, language = {en} } @inproceedings{KolditzAlbinFasseetal.2015, author = {Kolditz, Melanie and Albin, Thivaharan and Fasse, Alessandro and Br{\"u}ggemann, Gert-Peter and Abel, Dirk and Albracht, Kirsten}, title = {Simulative Analysis of Joint Loading During Leg Press Exercise for Control Applications}, series = {IFAC-PapersOnLine}, volume = {48}, booktitle = {IFAC-PapersOnLine}, number = {20}, doi = {10.1016/j.ifacol.2015.10.179}, pages = {435 -- 440}, year = {2015}, language = {en} } @article{ZangeSchopenAlbrachtetal.2017, author = {Zange, Jochen and Schopen, Kathrin and Albracht, Kirsten and Gerlach, Darius A. and Frings-Meuthen, Petra and Maffiuletti, Nicola A. and Bloch, Wilhelm and Rittweger, J{\"o}rn}, title = {Using the Hephaistos orthotic device to study countermeasure effectiveness of neuromuscular electrical stimulation and dietary lupin protein supplementation, a randomised controlled trial}, series = {Plos one}, volume = {12}, journal = {Plos one}, number = {2}, doi = {10.1371/journal.pone.0171562}, year = {2017}, language = {en} } @article{CiritsisHorbachStaatetal.2018, author = {Ciritsis, Alexander and Horbach, Andreas and Staat, Manfred and Kuhl, Christiane K. and Kraemer, Nils Andreas}, title = {Porosity and tissue integration of elastic mesh implants evaluated in vitro and in vivo}, series = {Journal of Biomedical Materials Research: Part B: Applied Biomaterials}, volume = {106}, journal = {Journal of Biomedical Materials Research: Part B: Applied Biomaterials}, number = {2}, publisher = {Wiley}, address = {New York, NY}, issn = {1552-4981}, doi = {10.1002/jbm.b.33877}, pages = {827 -- 833}, year = {2018}, abstract = {Purpose In vivo, a loss of mesh porosity triggers scar tissue formation and restricts functionality. The purpose of this study was to evaluate the properties and configuration changes as mesh deformation and mesh shrinkage of a soft mesh implant compared with a conventional stiff mesh implant in vitro and in a porcine model. Material and Methods Tensile tests and digital image correlation were used to determine the textile porosity for both mesh types in vitro. A group of three pigs each were treated with magnetic resonance imaging (MRI) visible conventional stiff polyvinylidene fluoride meshes (PVDF) or with soft thermoplastic polyurethane meshes (TPU) (FEG Textiltechnik mbH, Aachen, Germany), respectively. MRI was performed with a pneumoperitoneum at a pressure of 0 and 15 mmHg, which resulted in bulging of the abdomen. The mesh-induced signal voids were semiautomatically segmented and the mesh areas were determined. With the deformations assessed in both mesh types at both pressure conditions, the porosity change of the meshes after 8 weeks of ingrowth was calculated as an indicator of preserved elastic properties. The explanted specimens were examined histologically for the maturity of the scar (collagen I/III ratio). Results In TPU, the in vitro porosity increased constantly, in PVDF, a loss of porosity was observed under mild stresses. In vivo, the mean mesh areas of TPU were 206.8 cm2 (± 5.7 cm2) at 0 mmHg pneumoperitoneum and 274.6 cm2 (± 5.2 cm2) at 15 mmHg; for PVDF the mean areas were 205.5 cm2 (± 8.8 cm2) and 221.5 cm2 (± 11.8 cm2), respectively. The pneumoperitoneum-induced pressure increase resulted in a calculated porosity increase of 8.4\% for TPU and of 1.2\% for PVDF. The mean collagen I/III ratio was 8.7 (± 0.5) for TPU and 4.7 (± 0.7) for PVDF. Conclusion The elastic properties of TPU mesh implants result in improved tissue integration compared to conventional PVDF meshes, and they adapt more efficiently to the abdominal wall. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 827-833, 2018.}, language = {en} }