@article{AggarwalDhimanKumaretal.2012, author = {Aggarwal, Pranav and Dhiman, Shashi K. and Kumar, G. and Scherer, Ulrich W. and Singla, M. L. and Srivastava, Alok}, title = {Optical study of poly(ethyleneterephthalate) modified by different ionizing radiation dose}, series = {Indian Journal of Pure and Applied Physics}, volume = {50}, journal = {Indian Journal of Pure and Applied Physics}, number = {2}, issn = {0019-5596}, pages = {129 -- 132}, year = {2012}, abstract = {Thin films of poly(ethyleneterephthalate) [PET]were exposed to radiation dose ranging from 10 to 30 kGy by using gamma rays in the range 12.8-177.8 MGy using swift light ions of hydrogen. There was no effect of the radiation dose on the optical behaviour of PET as a result of exposure to radiation dose up to 30 kGy brought about by gamma rays but a significant decrease in the optical band gap values was observed when PET was exposed to swift light ions of hydrogen. The data obtained are discussed in terms of optical studies carried out on PET using swift heavy ions.}, language = {en} } @article{OrzadaSolbachGratzetal.2019, author = {Orzada, Stephan and Solbach, Klaus and Gratz, Marcel and Brunheim, Sascha and Fiedler, Thomas M. and Johst, S{\"o}ren and Bitz, Andreas and Shooshtary, Samaneh and Abuelhaija, Ashraf and Voelker, Maximilian N. and Rietsch, Stefan H. G. and Kraff, Oliver and Maderwald, Stefan and Fl{\"o}ser, Martina and Oehmingen, Mark and Quick, Harald H. and Ladd, Mark E.}, title = {A 32-channel parallel transmit system add-on for 7T MRI}, series = {Plos one}, journal = {Plos one}, doi = {10.1371/journal.pone.0222452}, year = {2019}, language = {en} } @article{IkenAhlbornGerlachetal.2013, author = {Iken, Heiko and Ahlborn, Kristina and Gerlach, Frank and Vonau, Winfried and Zander, Wilhelm and Schubert, J{\"u}rgen P. and Sch{\"o}ning, Michael Josef}, title = {Development of redox glasses and subsequent processing by means of pulsed laser deposition for realizing silicon-based thin-film sensors}, series = {Electrochimica acta}, journal = {Electrochimica acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3859 (E-Journal); 0013-4686 (Print)}, pages = {Available online 30.8.2013}, year = {2013}, language = {en} } @inproceedings{BuxbaumSchwarteXuetal.1999, author = {Buxbaum, Bernd and Schwarte, Rudolf and Xu, Zhanping and Ringbeck, Thorsten and Heinol, Horst-Guenther and Schulte, J. and Tai, W. and Zhang, Z. and Luan, X. and Fricke, J.}, title = {Charge Transfer Simulation in PMD-Structures}, series = {Sensor 99 : proceedings / 9th Int'l Fair and Conference for Sensors, Transducers \& Systems, May 18 - 20, 1999, Exhibition Centre N{\"u}rnberg/Germany. - Vol. 2}, booktitle = {Sensor 99 : proceedings / 9th Int'l Fair and Conference for Sensors, Transducers \& Systems, May 18 - 20, 1999, Exhibition Centre N{\"u}rnberg/Germany. - Vol. 2}, publisher = {AMA Service GmbH}, address = {Wunsdorf}, pages = {427 -- 432}, year = {1999}, language = {en} } @article{SrivastavaSinghAggarwaletal.2010, author = {Srivastava, Alok and Singh, Virendra and Aggarwal, Pranav and Schneeweiss, F. and Scherer, Ulrich W. and Friedrich, W.}, title = {Optical studies of insulating polymers for radiation dose monitoring}, series = {Indian Journal of Pure \& Applied Physics}, volume = {48}, journal = {Indian Journal of Pure \& Applied Physics}, number = {11}, isbn = {0019-5596}, pages = {782 -- 786}, year = {2010}, language = {en} } @article{EichlerBalcBremenetal.2024, author = {Eichler, Fabian and Balc, Nicolae and Bremen, Sebastian and Nink, Philipp}, title = {Investigation of laser powder bed fusion parameters with respect to their influence on the thermal conductivity of 316L samples}, series = {Journal of Manufacturing and Materials Processing}, volume = {8}, journal = {Journal of Manufacturing and Materials Processing}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2504-4494}, doi = {10.3390/jmmp8040166}, pages = {12 Seiten}, year = {2024}, abstract = {The thermal conductivity of components manufactured using Laser Powder Bed Fusion (LPBF), also called Selective Laser Melting (SLM), plays an important role in their processing. Not only does a reduced thermal conductivity cause residual stresses during the process, but it also makes subsequent processes such as the welding of LPBF components more difficult. This article uses 316L stainless steel samples to investigate whether and to what extent the thermal conductivity of specimens can be influenced by different LPBF parameters. To this end, samples are set up using different parameters, orientations, and powder conditions and measured by a heat flow meter using stationary analysis. The heat flow meter set-up used in this study achieves good reproducibility and high measurement accuracy, so that comparative measurements between the various LPBF influencing factors to be tested are possible. In summary, the series of measurements show that the residual porosity of the components has the greatest influence on conductivity. The degradation of the powder due to increased recycling also appears to be detectable. The build-up direction shows no detectable effect in the measurement series.}, language = {en} }