@article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @article{RodriguesMoraisNordietal.2018, author = {Rodrigues, Raul T. and Morais, Paulo V. and Nordi, Cristina S. F. and Sch{\"o}ning, Michael Josef and Siqueira Jr., Jos{\´e} R. and Caseli, Luciano}, title = {Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films}, series = {Langmuir}, volume = {34}, journal = {Langmuir}, number = {9}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-5827}, doi = {10.1021/acs.langmuir.7b04317}, pages = {3082 -- 3093}, year = {2018}, abstract = {Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.}, language = {en} } @book{SchoeningPoghossian2018, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {xii, 480 Seiten ; Illustrationen, Diagramme}, year = {2018}, language = {en} } @incollection{YoshinobuKrauseMiyamotoetal.2018, author = {Yoshinobu, Tatsuo and Krause, Steffi and Miyamoto, Ko-ichiro and Werner, Frederik and Poghossian, Arshak and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {(Bio-)chemical Sensing and Imaging by LAPS and SPIM}, series = {Label-free biosensing: advanced materials, devices and applications}, booktitle = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {103 -- 132}, year = {2018}, abstract = {The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications.}, language = {en} } @inproceedings{BungTullis2018, author = {Bung, Daniel B. and Tullis, Blake}, title = {Hydraulic Structures - ISHS2018 in Perspective}, series = {7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May}, booktitle = {7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May}, isbn = {978-0-692-13277-7}, doi = {10.15142/T3WH2B}, pages = {9 seiten}, year = {2018}, language = {en} } @inproceedings{ValeroVogelSchmidtetal.2018, author = {Valero, Daniel and Vogel, Jochen and Schmidt, Daniel and Bung, Daniel B.}, title = {Three-dimensional flow structure inside the cavity of a non-aerated stepped chute}, series = {7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May}, booktitle = {7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May}, isbn = {978-0-692-13277-7}, doi = {10.15142/T3GH17}, pages = {12 Seiten}, year = {2018}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Serial Hybrid Propulsion Systems}, series = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, booktitle = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, pages = {11 S.}, year = {2018}, language = {en} } @inproceedings{FingerGoettenBraun2018, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten}, title = {Initial Sizing for a Family of Hybrid-Electric VTOL General Aviation Aircraft}, series = {67. Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {67. Deutscher Luft- und Raumfahrtkongress 2018}, pages = {14 S.}, year = {2018}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Parallel Hybrid Propulsion Systems}, series = {Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2018}, doi = {10.25967/480227}, pages = {15 S.}, year = {2018}, language = {en} } @article{GoettenFingerHavermannetal.2018, author = {G{\"o}tten, Falk and Finger, Felix and Havermann, Marc and Braun, Carsten and Gomez, Francisco and Bill, C.}, title = {On the flight performance impact of landing gear drag reduction methods for unmanned air vehicles}, series = {Deutscher Luft- und Raumfahrtkongress 2018}, journal = {Deutscher Luft- und Raumfahrtkongress 2018}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/480058}, pages = {11 S.}, year = {2018}, abstract = {The flight performance impact of three different landing gear configurations on a small, fixed-wing UAV is analyzed with a combination of RANS CFD calculations and an incremental flight performance algorithm. A standard fixed landing gear configuration is taken as a baseline, while the influence of retracting the landing gear or applying streamlined fairings is investigated. A retraction leads to a significant parasite drag reduction, while also fairings promise large savings. The increase in lift-to-drag ratio is reduced at high lift coefficients due to the influence of induced drag. All configurations are tested on three different design missions with an incremental flight performance algorithm. A trade-off study is performed using the retracted or faired landing gear's weight increase as a variable. The analysis reveals only small mission performance gains as the aerodynamic improvements are negated by weight penalties. A new workflow for decision-making is presented that allows to estimate if a change in landing gear configuration is beneficial for a small UAV.}, language = {en} } @phdthesis{Keinz2018, author = {Keinz, Jan}, title = {Optimization of a Dry Low NOx Micromix Combustor for an Industrial Gas Turbine Using Hydrogen-Rich Syngas Fuel}, publisher = {Universit{\´e} Libre de Bruxelles - Brussels School of Engineering Aero-Thermo-Mechanics}, address = {Br{\"u}ssel}, year = {2018}, language = {en} } @inproceedings{RichterBraunsteinStaeudleetal.2018, author = {Richter, Charlotte and Braunstein, Bjoern and St{\"a}udle, Benjamin and Attias, Julia and Suess, Alexander and Weber, T. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices}, series = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, booktitle = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, year = {2018}, language = {en} } @article{BerneckerKlierSternetal.2018, author = {Bernecker, Andreas and Klier, Julia and Stern, Sebastian and Thiel, Lea}, title = {Sustaining high performance beyond public-sector pilot projects.}, number = {September 2018}, organization = {McKinsey\&Company}, year = {2018}, language = {en} } @techreport{BerneckerBoyerGathmann2018, type = {Working Paper}, author = {Bernecker, Andreas and Boyer, Pierre and Gathmann, Christina}, title = {The Role of Electoral Incentives for Policy Innovation: Evidence from the US Welfare Reform}, series = {CESifo Working Paper}, journal = {CESifo Working Paper}, number = {No. 6964}, organization = {CESifo Group Munich}, issn = {ISSN 2364-1428 (electronic version)}, pages = {60}, year = {2018}, language = {en} } @article{TekinAshikagaHorikawaetal.2018, author = {Tekin, Nurettin and Ashikaga, Mitsugu and Horikawa, Atsushi and Funke, Harald}, title = {Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems}, series = {Gas for energy}, journal = {Gas for energy}, number = {2}, publisher = {Vulkan-Verlag}, address = {Essen}, pages = {4}, year = {2018}, abstract = {For fuel flexibility enhancement hydrogen represents a possible alternative gas turbine fuel within future low emission power generation, in case of hydrogen production by the use of renewable energy sources such as wind energy or biomass. Kawasaki Heavy Industries, Ltd. (KHI) has research and development projects for future hydrogen society; production of hydrogen gas, refinement and liquefaction for transportation and storage, and utilization with gas turbine / gas engine for the generation of electricity. In the development of hydrogen gas turbines, a key technology is the stable and low NOx hydrogen combustion, especially Dry Low Emission (DLE) or Dry Low NOx (DLN) hydrogen combustion. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for DLE hydrogen combustion. Thus, the development of DLE hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fueled gas turbines. The DLE Micro-Mix combustion principle for hydrogen fuel has been in development for many years to significantly reduce NOx emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized "diffusion-type" flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of the reactants in the flame region of the micro-flames.}, language = {en} } @article{BalakirskiKotliarPaulyetal.2018, author = {Balakirski, Galina and Kotliar, Konstantin and Pauly, Karolin J. and Krings, Laura K. and R{\"u}bben, Albert and Baron, Jens M. and Schmitt, Laurenz}, title = {Surgical Site Infections After Dermatologic Surgery in Immunocompromised Patients: A Single-Center Experience}, series = {Dermatologic Surgery}, journal = {Dermatologic Surgery}, number = {44 (12)}, publisher = {Wolters Kluwer}, doi = {10.1097/DSS.0000000000001615}, pages = {1525 -- 1536}, year = {2018}, abstract = {BACKGROUND Immunosuppression is often considered as an indication for antibiotic prophylaxis to prevent surgical site infections (SSI) while performing skin surgery. However, the data on the risk of developing SSI after dermatologic surgery in immunosuppressed patients are limited. PATIENTS AND METHODS All patients of the Department of Dermatology and Allergology at the University Hospital of RWTH Aachen in Aachen, Germany, who underwent hospitalization for a dermatologic surgery between June 2016 and January 2017 (6 months), were followed up after surgery until completion of the wound healing process. The follow-up addressed the occurrence of SSI and the need for systemic antibiotics after the operative procedure. Immunocompromised patients were compared with immunocompetent patients. The investigation was conducted as a retrospective analysis of patient records. RESULTS The authors performed 284 dermatologic surgeries in 177 patients. Nineteen percent (54/284) of the skin surgery was performed on immunocompromised patients. The most common indications for surgical treatment were nonmelanoma skin cancer and malignant melanomas. Surgical site infections occurred in 6.7\% (19/284) of the cases. In 95\% (18/19), systemic antibiotic treatment was needed. Twenty-one percent of all SSI (4/19) were seen in immunosuppressed patients. CONCLUSION According to the authors' data, immunosuppression does not represent a significant risk factor for SSI after dermatologic surgery. However, larger prospective studies are needed to make specific recommendations on the use of antibiotic prophylaxis while performing skin surgery in these patients. The available data on complications after dermatologic surgery have improved over the past years. Particularly, additional risk factors have been identified for surgical site infections (SSI). Purulent surgical sites, older age, involvement of head, neck, and acral regions, and also the involvement of less experienced surgeons have been reported to increase the risk of the SSI after dermatologic surgeries.1 In general, the incidence of SSI after skin surgery is considered to be low.1,2 However, antibiotics in dermatologic surgeries, especially in the perioperative setting, seem to be overused,3,4 particularly regarding developing antibiotic resistances and side effects. Immunosuppression has been recommended to be taken into consideration as an additional indication for antibiotic prophylaxis to prevent SSI after skin surgery in special cases.5,6 However, these recommendations do not specify the exact dermatologic surgeries, and were not specifically developed for dermatologic surgery patients and treatments, but adopted from other surgical fields.6 According to the survey conducted on American College of Mohs Surgery members in 2012, 13\% to 29\% of the surgeons administered antibiotic prophylaxis to immunocompromised patients to prevent SSI while performing dermatologic surgery on noninfected skin,3 although this was not recommended by Journal of the American Academy of Dermatology Advisory Statement. Indeed, the data on the risk of developing SSI after dermatologic surgery in immunosuppressed patients are limited. However, it is possible that due to the insufficient evidence on the risk of SSI occurrence in this patient group, dermatologic surgeons tend to overuse perioperative antibiotic prophylaxis. To make specific recommendations on the use of antibiotic prophylaxis in immunosuppressed patients in the field of skin surgery, more information about the incidence of SSI after dermatologic surgery in these patients is needed. The aim of this study was to fill this data gap by investigating whether there is an increased risk of SSI after skin surgery in immunocompromised patients compared with immunocompetent patients.}, language = {en} } @inproceedings{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Case studies in initial sizing for hybrid-electric general aviation aircraft}, series = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, booktitle = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, doi = {10.2514/6.2018-5005}, year = {2018}, language = {en} } @inproceedings{RendonDieckmannWeidleetal.2018, author = {Rendon, Carlos and Dieckmann, Simon and Weidle, Mathias and Dersch, J{\"u}rgen and Teixeira Boura, Cristiano Jos{\´e} and Polklas, Thomas and Kuschel, Marcus and Herrmann, Ulf}, title = {Retrofitting of existing parabolic trough collector power plants with molten salt tower systems}, series = {AIP Conference Proceedings}, volume = {2033}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.5067030}, pages = {030014-1 -- 030014-8}, year = {2018}, language = {en} } @article{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs}, series = {CEAS Aeronautical Journal}, volume = {10}, journal = {CEAS Aeronautical Journal}, number = {3}, publisher = {Springer}, issn = {1869-5582 print}, doi = {10.1007/s13272-018-0352-x}, pages = {843}, year = {2018}, abstract = {One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost-benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters.}, language = {en} } @inproceedings{EssingholtMeyerKuhnetal.2018, author = {Essingholt, Felix and Meyer, Frederic and Kuhn, Peter and Schmidt, Philip and Benkner, Thorsten and Grabmaier, Anton}, title = {Non-invasive heart beat measurement using microwave resonators}, series = {Proceedings, Vol. 2, Eurosensors 2018 Conference, Graz, Austria, 9-12 September 2018}, booktitle = {Proceedings, Vol. 2, Eurosensors 2018 Conference, Graz, Austria, 9-12 September 2018}, publisher = {MDPI}, address = {Basel}, issn = {2504-3900}, doi = {10.3390/proceedings2131002}, pages = {1002}, year = {2018}, language = {en} }