@article{MuellerJungAhammer2017, author = {M{\"u}ller, Wolfram and Jung, Alexander and Ahammer, Helmut}, title = {Advantages and problems of nonlinear methods applied to analyze physiological time signals: human balance control as an example}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {Article number 2464}, publisher = {Springer Nature}, address = {Cham}, isbn = {2045-2322}, doi = {10.1038/s41598-017-02665-5}, pages = {1 -- 11}, year = {2017}, language = {en} } @article{OrzadaFiedlerBitzetal.2020, author = {Orzada, Stephan and Fiedler, Thomas M. and Bitz, Andreas and Ladd, Mark E. and Quick, Harald H.}, title = {Local SAR compression with overestimation control to reduce maximum relative SAR overestimation and improve multi-channel RF array performance}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {34 (2021)}, publisher = {Springer}, address = {Heidelberg}, isbn = {1352-8661}, doi = {10.1007/s10334-020-00890-0}, pages = {153 -- 164}, year = {2020}, abstract = {Objective In local SAR compression algorithms, the overestimation is generally not linearly dependent on actual local SAR. This can lead to large relative overestimation at low actual SAR values, unnecessarily constraining transmit array performance. Method Two strategies are proposed to reduce maximum relative overestimation for a given number of VOPs. The first strategy uses an overestimation matrix that roughly approximates actual local SAR; the second strategy uses a small set of pre-calculated VOPs as the overestimation term for the compression. Result Comparison with a previous method shows that for a given maximum relative overestimation the number of VOPs can be reduced by around 20\% at the cost of a higher absolute overestimation at high actual local SAR values. Conclusion The proposed strategies outperform a previously published strategy and can improve the SAR compression where maximum relative overestimation constrains the performance of parallel transmission.}, language = {en} } @article{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Human-Centered Gamification Framework for Manufacturing Systems}, series = {Procedia CIRP}, volume = {93}, journal = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2020.04.076}, pages = {670 -- 675}, year = {2020}, abstract = {While bringing new opportunities, the Industry 4.0 movement also imposes new challenges to the manufacturing industry and all its stakeholders. In this competitive environment, a skilled and engaged workforce is a key to success. Gamification can generate valuable feedbacks for improving employees' engagement and performance. Currently, Gamification in workspaces focuses on computer-based assignments and training, while tasks that require manual labor are rarely considered. This research provides an overview of Enterprise Gamification approaches and evaluates the challenges. Based on that, a skill-based Gamification framework for manual tasks is proposed, and a case study in the Industry 4.0 model factory is shown.}, language = {en} } @article{EveraersKarimiVarzanehFlecketal.2020, author = {Everaers, Ralf and Karimi-Varzaneh, Hossein Ali and Fleck, Franz and Hojdis, Nils and Svaneborg, Carsten}, title = {Kremer-Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale}, series = {Macromolecules}, volume = {53}, journal = {Macromolecules}, number = {6}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-5835}, doi = {10.1021/acs.macromol.9b02428}, pages = {1901 -- 1916}, year = {2020}, abstract = {The Kremer-Grest (KG) polymer model is a standard model for studying generic polymer properties in molecular dynamics simulations. It owes its popularity to its simplicity and computational efficiency, rather than its ability to represent specific polymers species and conditions. Here we show that by tuning the chain stiffness it is possible to adapt the KG model to model melts of real polymers. In particular, we provide mapping relations from KG to SI units for a wide range of commodity polymers. The connection between the experimental and the KG melts is made at the Kuhn scale, i.e., at the crossover from the chemistry-specific small scale to the universal large scale behavior. We expect Kuhn scale-mapped KG models to faithfully represent universal properties dominated by the large scale conformational statistics and dynamics of flexible polymers. In particular, we observe very good agreement between entanglement moduli of our KG models and the experimental moduli of the target polymers.}, language = {en} } @article{MeyerHentschkeHageretal.2017, author = {Meyer, Jan and Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils and Karimi-Varzaneh, Hossein Ali}, title = {Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica-Silica Contact in Filled Rubber}, series = {Macromolecules}, volume = {50}, journal = {Macromolecules}, number = {17}, issn = {1520-5835}, doi = {10.1021/acs.macromol.7b00947}, pages = {6679 -- 6689}, year = {2017}, language = {en} } @article{HagerHentschkeHojdisetal.2015, author = {Hager, Jonathan and Hentschke, Reinhard and Hojdis, Nils and Karimi-Varzaneh, Hossein Ali}, title = {Computer Simulation of Particle-Particle Interaction in a Model Polymer Nanocomposite}, series = {Macromolecules}, volume = {48}, journal = {Macromolecules}, number = {24}, issn = {1520-5835}, doi = {10.1021/acs.macromol.5b01864}, pages = {9039 -- 9049}, year = {2015}, language = {en} } @article{WallerBraunHojdisetal.2007, author = {Waller, Mark P. and Braun, Heiko and Hojdis, Nils and B{\"u}hl, Michael}, title = {Geometries of Second-Row Transition-Metal Complexes from Density-Functional Theory}, series = {Journal of Chemical Theory and Computation}, volume = {3}, journal = {Journal of Chemical Theory and Computation}, number = {6}, issn = {1549-9626}, doi = {10.1021/ct700178y}, pages = {2234 -- 2242}, year = {2007}, language = {en} } @article{SvaneborgKarimiVarzanehHojdisetal.2018, author = {Svaneborg, Carsten and Karimi-Varzaneh, Hossein Ali and Hojdis, Nils and Fleck, Franz and Everaers, Ralf}, title = {Kremer-Grest Models for Universal Properties of Specific Common Polymer Species}, series = {Soft Condensed Matter}, journal = {Soft Condensed Matter}, number = {1606.05008}, year = {2018}, abstract = {The Kremer-Grest (KG) bead-spring model is a near standard in Molecular Dynamic simulations of generic polymer properties. It owes its popularity to its computational efficiency, rather than its ability to represent specific polymer species and conditions. Here we investigate how to adapt the model to match the universal properties of a wide range of chemical polymers species. For this purpose we vary a single parameter originally introduced by Faller and M{\"u}ller-Plathe, the chain stiffness. Examples include polystyrene, polyethylene, polypropylene, cis-polyisoprene, polydimethylsiloxane, polyethyleneoxide and styrene-butadiene rubber. We do this by matching the number of Kuhn segments per chain and the number of Kuhn segments per cubic Kuhn volume for the polymer species and for the Kremer-Grest model. We also derive mapping relations for converting KG model units back to physical units, in particular we obtain the entanglement time for the KG model as function of stiffness allowing for a time mapping. To test these relations, we generate large equilibrated well entangled polymer melts, and measure the entanglement moduli using a static primitive-path analysis of the entangled melt structure as well as by simulations of step-strain deformation of the model melts. The obtained moduli for our model polymer melts are in good agreement with the experimentally expected moduli.}, language = {en} } @article{MayerHentschkeHageretal.2017, author = {Mayer, Jan and Hentschke, Reinhard and Hager, Jonathan and Hojdis, Nils and Karimi-Varnaneh, Hossein Ali}, title = {A Nano-Mechanical Instability as Primary Contribution to Rolling Resistance}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {Article number 11275}, publisher = {Springer}, address = {Berlin}, issn = {2045-2322}, year = {2017}, language = {en} } @article{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results}, series = {International Journal of Human-Computer Studies}, volume = {165}, journal = {International Journal of Human-Computer Studies}, number = {Art. No. 102854}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1071-5819}, doi = {10.1016/j.ijhcs.2022.102854}, year = {2022}, abstract = {Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence.}, language = {en} } @article{PfaffEnningSutter2022, author = {Pfaff, Raphael and Enning, Manfred and Sutter, Stefan}, title = {A risk‑based approach to automatic brake tests for rail freight service: incident analysis and realisation concept}, series = {SN Applied Sciences}, volume = {4}, journal = {SN Applied Sciences}, number = {4}, publisher = {Springer}, address = {Cham}, issn = {2523-3971}, doi = {10.1007/s42452-022-05007-x}, pages = {1 -- 14}, year = {2022}, abstract = {This study reviews the practice of brake tests in freight railways, which is time consuming and not suitable to detect certain failure types. Public incident reports are analysed to derive a reasonable brake test hardware and communication architecture, which aims to provide automatic brake tests at lower cost than current solutions. The proposed solutions relies exclusively on brake pipe and brake cylinder pressure sensors, a brake release position switch as well as radio communication via standard protocols. The approach is embedded in the Wagon 4.0 concept, which is a holistic approach to a smart freight wagon. The reduction of manual processes yields a strong incentive due to high savings in manual labour and increased productivity.}, language = {en} } @article{OliveiraMolinnusBegingetal.2021, author = {Oliveira, Danilo A. and Molinnus, Denise and Beging, Stefan and Siqueira Jr, Jos{\´e} R. and Sch{\"o}ning, Michael Josef}, title = {Biosensor Based on Self-Assembled Films of Graphene Oxide and Polyaniline Using a Field-Effect Device Platform}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000747}, pages = {1 -- 9}, year = {2021}, abstract = {A new functionalization method to modify capacitive electrolyte-insulator-semiconductor (EIS) structures with nanofilms is presented. Layers of polyallylamine hydrochloride (PAH) and graphene oxide (GO) with the compound polyaniline:poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI:PAAMPSA) are deposited onto a p-Si/SiO2 chip using the layer-by-layer technique (LbL). Two different enzymes (urease and penicillinase) are separately immobilized on top of a five-bilayer stack of the PAH:GO/PANI:PAAMPSA-modified EIS chip, forming a biosensor for detection of urea and penicillin, respectively. Electrochemical characterization is performed by constant capacitance (ConCap) measurements, and the film morphology is characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). An increase in the average sensitivity of the modified biosensors (EIS-nanofilm-enzyme) of around 15\% is found in relation to sensors, only carrying the enzyme but without the nanofilm (EIS-enzyme). In this sense, the nanofilm acts as a stable bioreceptor onto the EIS chip improving the output signal in terms of sensitivity and stability.}, language = {en} } @article{WeldenNagamineKomesuWagneretal.2021, author = {Welden, Rene and Nagamine Komesu, Cindy A. and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Photoelectrochemical enzymatic penicillin biosensor: A proof-of-concept experiment}, series = {Electrochemical Science Advances}, volume = {2}, journal = {Electrochemical Science Advances}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2698-5977}, doi = {10.1002/elsa.202100131}, pages = {1 -- 5}, year = {2021}, abstract = {Photoelectrochemical (PEC) biosensors are a rather novel type of biosensors thatutilizelighttoprovideinformationaboutthecompositionofananalyte,enablinglight-controlled multi-analyte measurements. For enzymatic PEC biosensors,amperometric detection principles are already known in the literature. In con-trast, there is only a little information on H+-ion sensitive PEC biosensors. Inthis work, we demonstrate the detection of H+ions emerged by H+-generatingenzymes, exemplarily demonstrated with penicillinase as a model enzyme on atitanium dioxide photoanode. First, we describe the pH sensitivity of the sensorand study possible photoelectrocatalytic reactions with penicillin. Second, weshow the enzymatic PEC detection of penicillin.}, language = {en} } @article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bjoern and Staeudle, Benjamin and Attias, Julia and Suess, Alexander and Weber, Tobias and Mileva, Katya N. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity}, series = {npj Microgravity}, volume = {7}, journal = {npj Microgravity}, number = {Article number: 32}, publisher = {Springer Nature}, address = {New York}, issn = {2373-8065}, doi = {10.1038/s41526-021-00155-7}, pages = {7 Seiten}, year = {2021}, abstract = {Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70\% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle-series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study.}, language = {en} } @article{HeinkeKnickerAlbracht2021, author = {Heinke, Lars N. and Knicker, Axel J. and Albracht, Kirsten}, title = {Test-retest reliability of the internal shoulder rotator muscles' stretch reflex in healthy men}, series = {Journal of Electromyography and Kinesiology}, volume = {62}, journal = {Journal of Electromyography and Kinesiology}, number = {Article 102611}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2021.102611}, year = {2021}, abstract = {Until now the reproducibility of the short latency stretch reflex of the internal rotator muscles of the glenohumeral joint has not been identified. Twenty-three healthy male participants performed three sets of external shoulder rotation stretches with various pre-activation levels on two different dates of measurement to assess test-retest reliability. All stretches were applied with a dynamometer acceleration of 104°/s2 and a velocity of 150°/s. Electromyographical response was measured via surface EMG. Reflex latencies showed a pre-activation effect (ƞ2 = 0,355). ICC ranged from 0,735 to 0,909 indicating an overall "good" relative reliability. SRD 95\% lay between ±7,0 to ±12,3 ms.. The reflex gain showed overall poor test-retest reproducibility. The chosen methodological approach presented a suitable test protocol for shoulder muscles stretch reflex latency evaluation. A proof-of-concept study to validate the presented methodical approach in shoulder involvement including subjects with clinically relevant conditions is recommended.}, language = {en} } @article{HeelDiktaBraekers2021, author = {Heel, Mareike van and Dikta, Gerhard and Braekers, Roel}, title = {Bootstrap based goodness‑of‑fit tests for binary multivariate regression models}, series = {Journal of the Korean Statistical Society}, volume = {51}, journal = {Journal of the Korean Statistical Society}, publisher = {Springer Nature}, address = {Singapur}, issn = {2005-2863 (Online)}, doi = {10.1007/s42952-021-00142-4}, pages = {28 Seiten}, year = {2021}, abstract = {We consider a binary multivariate regression model where the conditional expectation of a binary variable given a higher-dimensional input variable belongs to a parametric family. Based on this, we introduce a model-based bootstrap (MBB) for higher-dimensional input variables. This test can be used to check whether a sequence of independent and identically distributed observations belongs to such a parametric family. The approach is based on the empirical residual process introduced by Stute (Ann Statist 25:613-641, 1997). In contrast to Stute and Zhu's approach (2002) Stute \& Zhu (Scandinavian J Statist 29:535-545, 2002), a transformation is not required. Thus, any problems associated with non-parametric regression estimation are avoided. As a result, the MBB method is much easier for users to implement. To illustrate the power of the MBB based tests, a small simulation study is performed. Compared to the approach of Stute \& Zhu (Scandinavian J Statist 29:535-545, 2002), the simulations indicate a slightly improved power of the MBB based method. Finally, both methods are applied to a real data set.}, language = {en} } @article{KlettkeHomburgGell2015, author = {Klettke, Tanja and Homburg, Carsten and Gell, Sebastian}, title = {How to measure analyst forecast effort}, series = {European Accounting Review}, volume = {24}, journal = {European Accounting Review}, number = {1}, publisher = {Taylor \& Francis}, address = {London}, issn = {0963-8180}, doi = {10.1080/09638180.2014.909291}, pages = {129 -- 146}, year = {2015}, abstract = {We introduce a new way to measure the forecast effort that analysts devote to their earnings forecasts by measuring the analyst's general effort for all covered firms. While the commonly applied effort measure is based on analyst behaviour for one firm, our measure considers analyst behaviour for all covered firms. Our general effort measure captures additional information about analyst effort and thus can identify accurate forecasts. We emphasise the importance of investigating analyst behaviour in a larger context and argue that analysts who generally devote substantial forecast effort are also likely to devote substantial effort to a specific firm, even if this effort might not be captured by a firm-specific measure. Empirical results reveal that analysts who devote higher general forecast effort issue more accurate forecasts. Additional investigations show that analysts' career prospects improve with higher general forecast effort. Our measure improves on existing methods as it has higher explanatory power regarding differences in forecast accuracy than the commonly applied effort measure. Additionally, it can address research questions that cannot be examined with a firm-specific measure. It provides a simple but comprehensive way to identify accurate analysts.}, language = {en} } @article{MuellerLeiseLorenzetal.2020, author = {M{\"u}ller, Tim M. and Leise, Philipp and Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Optimization and validation of pumping system design and operation for water supply in high-rise buildings}, series = {Optimization and Engineering}, volume = {2021}, journal = {Optimization and Engineering}, number = {22}, publisher = {Springer}, issn = {1573-2924}, doi = {10.1007/s11081-020-09553-4}, pages = {643 -- 686}, year = {2020}, abstract = {The application of mathematical optimization methods for water supply system design and operation provides the capacity to increase the energy efficiency and to lower the investment costs considerably. We present a system approach for the optimal design and operation of pumping systems in real-world high-rise buildings that is based on the usage of mixed-integer nonlinear and mixed-integer linear modeling approaches. In addition, we consider different booster station topologies, i.e. parallel and series-parallel central booster stations as well as decentral booster stations. To confirm the validity of the underlying optimization models with real-world system behavior, we additionally present validation results based on experiments conducted on a modularly constructed pumping test rig. Within the models we consider layout and control decisions for different load scenarios, leading to a Deterministic Equivalent of a two-stage stochastic optimization program. We use a piecewise linearization as well as a piecewise relaxation of the pumps' characteristics to derive mixed-integer linear models. Besides the solution with off-the-shelf solvers, we present a problem specific exact solving algorithm to improve the computation time. Focusing on the efficient exploration of the solution space, we divide the problem into smaller subproblems, which partly can be cut off in the solution process. Furthermore, we discuss the performance and applicability of the solution approaches for real buildings and analyze the technical aspects of the solutions from an engineer's point of view, keeping in mind the economically important trade-off between investment and operation costs.}, language = {en} } @article{AltherrLeisePfetschetal.2018, author = {Altherr, Lena and Leise, Philipp and Pfetsch, Marc E. and Schmitt, Andreas}, title = {Algorithmic design and resilience assessment of energy efficient high-rise water supply systems}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.211}, pages = {211 -- 223}, year = {2018}, abstract = {High-rise water supply systems provide water flow and suitable pressure in all levels of tall buildings. To design such state-of-the-art systems, the consideration of energy efficiency and the anticipation of component failures are mandatory. In this paper, we use Mixed-Integer Nonlinear Programming to compute an optimal placement of pipes and pumps, as well as an optimal control strategy.Moreover, we consider the resilience of the system to pump failures. A resilient system is able to fulfill a predefined minimum functionality even though components fail or are restricted in their normal usage. We present models to measure and optimize the resilience. To demonstrate our approach, we design and analyze an optimal resilient decentralized water supply system inspired by a real-life hotel building.}, language = {en} } @article{BraunChengDoweyetal.2021, author = {Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Performance evaluation of skill-based order-assignment in production environments with multi-agent systems}, series = {IEEE Journal of Emerging and Selected Topics in Industrial Electronics}, journal = {IEEE Journal of Emerging and Selected Topics in Industrial Electronics}, number = {Early Access}, publisher = {IEEE}, address = {New York}, issn = {2687-9735}, doi = {10.1109/JESTIE.2021.3108524}, year = {2021}, abstract = {The fourth industrial revolution introduces disruptive technologies to production environments. One of these technologies are multi-agent systems (MASs), where agents virtualize machines. However, the agent's actual performances in production environments can hardly be estimated as most research has been focusing on isolated projects and specific scenarios. We address this gap by implementing a highly connected and configurable reference model with quantifiable key performance indicators (KPIs) for production scheduling and routing in single-piece workflows. Furthermore, we propose an algorithm to optimize the search of extrema in highly connected distributed systems. The benefits, limits, and drawbacks of MASs and their performances are evaluated extensively by event-based simulations against the introduced model, which acts as a benchmark. Even though the performance of the proposed MAS is, on average, slightly lower than the reference system, the increased flexibility allows it to find new solutions and deliver improved factory-planning outcomes. Our MAS shows an emerging behavior by using flexible production techniques to correct errors and compensate for bottlenecks. This increased flexibility offers substantial improvement potential. The general model in this paper allows the transfer of the results to estimate real systems or other models.}, language = {en} } @article{JahnkeRousselHombachetal.2016, author = {Jahnke, Siegfried and Roussel, Johanna and Hombach, Thomas and Kochs, Johannes and Fischbach, Andreas and Huber, Gregor and Scharr, Hanno}, title = {phenoSeeder - A robot system for automated handling and phenotyping of individual seeds}, series = {Plant physiology}, volume = {172}, journal = {Plant physiology}, number = {3}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0032-0889}, doi = {10.1104/pp.16.01122}, pages = {1358 -- 1370}, year = {2016}, abstract = {The enormous diversity of seed traits is an intriguing feature and critical for the overwhelming success of higher plants. In particular, seed mass is generally regarded to be key for seedling development but is mostly approximated by using scanning methods delivering only two-dimensional data, often termed seed size. However, three-dimensional traits, such as the volume or mass of single seeds, are very rarely determined in routine measurements. Here, we introduce a device named phenoSeeder, which enables the handling and phenotyping of individual seeds of very different sizes. The system consists of a pick-and-place robot and a modular setup of sensors that can be versatilely extended. Basic biometric traits detected for individual seeds are two-dimensional data from projections, three-dimensional data from volumetric measures, and mass, from which seed density is also calculated. Each seed is tracked by an identifier and, after phenotyping, can be planted, sorted, or individually stored for further evaluation or processing (e.g. in routine seed-to-plant tracking pipelines). By investigating seeds of Arabidopsis (Arabidopsis thaliana), rapeseed (Brassica napus), and barley (Hordeum vulgare), we observed that, even for apparently round-shaped seeds of rapeseed, correlations between the projected area and the mass of seeds were much weaker than between volume and mass. This indicates that simple projections may not deliver good proxies for seed mass. Although throughput is limited, we expect that automated seed phenotyping on a single-seed basis can contribute valuable information for applications in a wide range of wild or crop species, including seed classification, seed sorting, and assessment of seed quality.}, language = {en} } @article{Wrede2016, author = {Wrede, Oliver}, title = {Continuity in travel information}, series = {Information Design Journal}, volume = {22}, journal = {Information Design Journal}, number = {2}, publisher = {John Benjamins}, address = {Amsterdam}, issn = {0142-5471}, doi = {10.1075/idj.22.2.09wre}, pages = {172 -- 178}, year = {2016}, abstract = {This article discusses the contrast between the information transportation companies provide to travellers and that of their brand messaging. Companies' brand messaging often portrays the service they provide as pleasant, stress free and perfect. Customers and users of the service, on the other hand, often describe their experience of the service as a negative one. This article suggests that the brand value would be greater if transportation companies paid more attention to the users' experience when designing their information systems, particularly in worst case scenarios.}, language = {en} } @article{NeuJanserKhatibietal.2017, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Fully Automated Operational Modal Analysis using multi-stage clustering}, series = {Mechanical Systems and Signal Processing}, volume = {Vol. 84, Part A}, journal = {Mechanical Systems and Signal Processing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0888-3270}, doi = {10.1016/j.ymssp.2016.07.031}, pages = {308 -- 323}, year = {2017}, language = {en} } @article{FunkeKeinzKustereretal.2016, author = {Funke, Harald and Keinz, Jan and Kusterer, Karsten and Ayed, Anis Haj and Kazari, Masahide and Kitajima, Junichi and Horikawa, Atsushi and Okada, Kunio}, title = {Experimental and Numerical Study on Optimizing the Dry Low NOₓ Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications}, series = {Journal of Thermal Science and Engineering Applications}, volume = {9}, journal = {Journal of Thermal Science and Engineering Applications}, number = {2}, publisher = {ASME}, address = {New York, NY}, issn = {1948-5093}, doi = {10.1115/1.4034849}, pages = {021001 -- 021001-10}, year = {2016}, abstract = {Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOₓ (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOₓ emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOₓ emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOₓ emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOₓ formation.}, language = {en} } @article{AyedKustererFunkeetal.2016, author = {Ayed, Anis Haj and Kusterer, Karsten and Funke, Harald and Keinz, Jan}, title = {CFD Based Improvement of the DLN Hydrogen Micromix Combustion Technology at Increased Energy Densities}, series = {American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)}, volume = {26}, journal = {American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)}, number = {3}, publisher = {GSSRR}, issn = {2313-4402}, pages = {290 -- 303}, year = {2016}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of Hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. Thus, the development of DLN combustion technologies is an essential and challenging task for the future of Hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel has been developed to significantly reduce NOx-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flash-back and the low NOx-emissions due to a very short residence time of reactants in the flame region of the micro-flames. The Micromix Combustion technology has been already proven experimentally and numerically for pure Hydrogen fuel operation at different energy density levels. The aim of the present study is to analyze the influence of different geometry parameter variations on the flame structure and the NOx emission and to identify the most relevant design parameters, aiming to provide a physical understanding of the Micromix flame sensitivity to the burner design and identify further optimization potential of this innovative combustion technology while increasing its energy density and making it mature enough for real gas turbine application. The study reveals great optimization potential of the Micromix Combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NOx emission. This allows to further increase the energy density of the Micromix burners and to integrate this technology in industrial gas turbines.}, language = {en} } @article{OrzadaJohstMaderwaldetal.2013, author = {Orzada, Stephan and Johst, S{\"o}ren and Maderwald, Stefan and Bitz, Andreas and Solbach, Klaus and Ladd, Mark E.}, title = {Mitigation of B1(+) inhomogeneity on single-channel transmit systems with TIAMO}, series = {Magnetic Resonance in Medicine}, volume = {70}, journal = {Magnetic Resonance in Medicine}, number = {1}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.24453}, pages = {290 -- 294}, year = {2013}, language = {en} } @article{OrzadaMaderwaldPoseretal.2012, author = {Orzada, S. and Maderwald, S. and Poser, B. A. and Johst, S. and Kannengiesser, S. and Ladd, M. E. and Bitz, Andreas}, title = {Time-interleaved acquisition of modes: an analysis of SAR and image contrast implications}, series = {Magnetic Resonance in Medicine}, volume = {67}, journal = {Magnetic Resonance in Medicine}, number = {4}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.23081}, pages = {1033 -- 1041}, year = {2012}, abstract = {s the magnetic field strength and therefore the operational frequency in MRI are increased, the radiofrequency wavelength approaches the size of the human head/body, resulting in wave effects which cause signal decreases and dropouts. Especially, whole-body imaging at 7 T and higher is therefore challenging. Recently, an acquisition scheme called time-interleaved acquisition of modes has been proposed to tackle the inhomogeneity problems in high-field MRI. The basic premise is to excite two (or more) different Burn:x-wiley:07403194:media:MRM23081:tex2gif-stack-1 modes using static radiofrequency shimming in an interleaved acquisition, where the complementary radiofrequency patterns of the two modes can be exploited to improve overall signal homogeneity. In this work, the impact of time-interleaved acquisition of mode on image contrast as well as on time-averaged specific absorption rate is addressed in detail. Time-interleaved acquisition of mode is superior in Burn:x-wiley:07403194:media:MRM23081:tex2gif-stack-2 homogeneity compared with conventional radiofrequency shimming while being highly specific absorption rate efficient. Time-interleaved acquisition of modes can enable almost homogeneous high-field imaging throughout the entire field of view in PD, T2, and T2*-weighted imaging and, if a specified homogeneity criterion is met, in T1-weighted imaging as well.}, language = {en} } @article{KobusBitzUdenetal.2012, author = {Kobus, Thiele and Bitz, Andreas and Uden, Mark J. van and Lagemaat, Miram W. and Rothgang, Eva and Orzada, Stephan and Heerschap, Arend and Scheenen, Tom W. J.}, title = {In vivo 31P MR spectroscopic imaging of the human prostate at 7 T: safety and feasibility}, series = {Magnetic Resonance in Medicine}, volume = {68}, journal = {Magnetic Resonance in Medicine}, number = {6}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.24175}, pages = {1683 -- 1695}, year = {2012}, abstract = {31P MR spectroscopic imaging of the human prostate provides information about phosphorylated metabolites that could be used for prostate cancer characterization. The sensitivity of a magnetic field strength of 7 T might enable 3D 31P MR spectroscopic imaging with relevant spatial resolution in a clinically acceptable measurement time. To this end, a 31P endorectal coil was developed and combined with an eight-channel 1H body-array coil to relate metabolic information to anatomical location. An extensive safety validation was performed to evaluate the specific absorption rate, the radiofrequency field distribution, and the temperature distribution of both coils. This validation consisted of detailed Finite Integration Technique simulations, confirmed by MR thermometry and Burn:x-wiley:07403194:media:MRM24175:tex2gif-stack-1 measurements in a phantom and in vivo temperature measurements. The safety studies demonstrated that the presence of the 31P endorectal coil had no influence on the specific absorption rate levels and temperature distribution of the external eight-channel 1H array coil. To stay within a 10 g averaged local specific absorption rate of 10 W/kg, a maximum time-averaged input power of 33 W for the 1H array coil was allowed. For transmitting with the 31P endorectal coil, our safety limit of less than 1°C temperature increase in vivo during a 15-min MR spectroscopic imaging experiment was reached at a time-averaged input power of 1.9 W. With this power setting, a second in vivo measurement was performed on a healthy volunteer. Using adiabatic excitation, 3D 31P MR spectroscopic imaging produced spectra from the entire prostate in 18 min with a spatial resolution of 4 cm3. The spectral resolution enabled the separate detection of phosphocholine, phosphoethanolamine, inorganic phosphate, and other metabolites that could play an important role in the characterization of prostate cancer.}, language = {en} } @article{OrzadaMaderwaldPoseretal.2010, author = {Orzada, Stephan and Maderwald, Stefan and Poser, Benedikt Andreas and Bitz, Andreas and Quick, Harald H. and Ladd, Mark E.}, title = {RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high-field MRI}, series = {Magnetic Resonance in Medicine}, volume = {64}, journal = {Magnetic Resonance in Medicine}, number = {2}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.22527}, pages = {327 -- 333}, year = {2010}, abstract = {As the field strength and, therefore, the operational frequency in MRI is increased, the wavelength approaches the size of the human head/body, resulting in wave effects, which cause signal decreases and dropouts. Several multichannel approaches have been proposed to try to tackle these problems, including RF shimming, where each element in an array is driven by its own amplifier and modulated with a certain (constant) amplitude and phase relative to the other elements, and Transmit SENSE, where spatially tailored RF pulses are used. In this article, a relatively inexpensive and easy to use imaging scheme for 7 Tesla imaging is proposed to mitigate signal voids due to B1 field inhomogeneity. Two time-interleaved images are acquired using a different excitation mode for each. By forming virtual receive elements, both images are reconstructed together using GRAPPA to achieve a more homogeneous image, with only small SNR and SAR penalty in head and body imaging at 7 Tesla.}, language = {en} } @article{UmutluBitzMaderwaldetal.2013, author = {Umutlu, Lale and Bitz, Andreas and Maderwald, Stefan and Orzada, Stephan and Kinner, Sonja and Kraff, Oliver and Brote, Irina and Ladd, Susanne C. and Schroeder, Tobias and Forsting, Michael}, title = {Contrast-enhanced ultra-high-field liver MRI: a feasibility trial}, series = {European Journal of Radiology}, volume = {82}, journal = {European Journal of Radiology}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0720-048X}, doi = {10.1016/j.ejrad.2011.07.004}, pages = {760 -- 767}, year = {2013}, language = {en} } @article{YazdanbakhshSolbachBitz2012, author = {Yazdanbakhsh, Pedram and Solbach, Klaus and Bitz, Andreas}, title = {Variable power combiner for RF mode shimming in 7-T MR imaging}, series = {IEEE Transaction on Biomedical Engineering}, volume = {59}, journal = {IEEE Transaction on Biomedical Engineering}, number = {9}, publisher = {IEEE}, address = {New York}, issn = {1558-2531}, doi = {10.1109/TBME.2012.2205926}, pages = {2549 -- 2557}, year = {2012}, abstract = {This contribution discusses the utilization of RF power in an MRI system with RF mode shimming which enables the superposition of circularly polarized modes of a transmit RF coil array driven by a Butler matrix. Since the required power for the individual modes can vary widely, mode-shimming can result in a significant underutilization of the total available RF power. A variable power combiner (VPC) is proposed to improve the power utilization: it can be realized as a reconfiguration of the MRI transmit system by the inclusion of one additional matrix network which receives the power from all transmit amplifiers at its input ports and provides any desired (combined) power distribution at its output ports by controlling the phase and amplitude of the amplifiers' input signals. The power distribution at the output ports of the VPC is then fed into the "mode" ports of the coil array Butler matrix in order to superimpose the spatial modes at the highest achievable power utilization. The VPC configuration is compared to the standard configuration of the transmit chain of our MRI system with 8 transmit channels and 16 coils. In realistic scenarios, improved power utilization was achieved from 17\% to 60\% and from 14\% to 55\% for an elliptical phantom and a region of interest in the abdomen, respectively, and an increase of the power utilization of 1 dB for a region of interest in the upper leg. In general, it is found that the VPC allows significant improvement in power utilization when the shimming solution demands only a few modes to be energized, while the technique can yield loss in power utilization in cases with many modes required at high power level.}, language = {en} } @article{ProchnowGebingLadageetal.2011, author = {Prochnow, Nora and Gebing, Tina and Ladage, Kerstin and Krause-Finkeldey, Dorothee and Ourdi, Abessamad El and Bitz, Andreas and Streckert, Joachim and Hansen, Volkert and Dermietzel, Rolf}, title = {Electromagnetic field effect or simply stress? Effects of UMTS exposure on hippocampal longterm plasticity in the context of procedure related hormone release}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {5}, publisher = {PLOS}, address = {San Francisco}, doi = {10.1371/journal.pone.0019437}, pages = {e19437}, year = {2011}, abstract = {Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded.}, language = {en} } @article{OrzadaBitzSchaeferetal.2011, author = {Orzada, Stephan and Bitz, Andreas and Sch{\"a}fer, Lena C. and Ladd, Susanne C. and Ladd, Mark E. and Maderwald, Stefan}, title = {Open design eight-channel transmit/receive coil for high-resolution and real-time ankle imaging at 7 T}, series = {Medical Physics}, volume = {38}, journal = {Medical Physics}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {2473-4209}, doi = {10.1118/1.3553399}, pages = {1162 -- 1167}, year = {2011}, abstract = {Purpose: At 1.5 T, real-time MRI of joint movement has been shown to be feasible. However, 7 T, provides higher SNR and thus an improved potential for parallel imaging acceleration. The purpose of this work was to build an open, U-shaped eight-channel transmit/receive microstrip coil for 7 T MRI to enable high-resolution and real-time imaging of the moving ankle joint. Methods: A U-shaped eight-channel transmit/receive array for the human ankle was built.urn:x-wiley:00942405:mp3399:equation:mp3399-math-0001-parameters and urn:x-wiley:00942405:mp3399:equation:mp3399-math-0002-factor were measured. SAR calculations of different ankle postures were performed to ensure patient safety. Inhomogeneities in the transmit field consequent to the open design were compensated for by the use of static RF shimming. High-resolution and real-time imaging was performed in human volunteers. Results: The presented array showed good performance with regard to patient comfort and image quality. High acceleration factors of up to 4 are feasible without visible acceleration artifacts. Reasonable image homogeneity was achieved with RF shimming. Conclusions: Open, noncylindrical designs for transmit/receive coils are practical at 7 T and real-time imaging of the moving joint is feasible with the presented coil design.}, language = {en} } @article{KraffBitzDammannetal.2010, author = {Kraff, Oliver and Bitz, Andreas and Dammann, Philipp and Ladd, Susanne C. and Ladd, Mark E. and Quick, Harald H.}, title = {An eight-channel transmit/receive multipurpose coil for musculoskeletal MR imaging at 7 T}, series = {Medical Physics}, volume = {37}, journal = {Medical Physics}, number = {12}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2473-4209}, doi = {10.1118/1.3517176}, pages = {6368 -- 6376}, year = {2010}, abstract = {Purpose: MRI plays a leading diagnostic role in assessing the musculoskeletal (MSK) system and is well established for most questions at clinically used field strengths (up to 3 T). However, there are still limitations in imaging early stages of cartilage degeneration, very fine tendons and ligaments, or in locating nerve lesions, for example. 7 T MRI of the knee has already received increasing attention in the current published literature, but there is a strong need to develop new radiofrequency (RF) coils to assess more regions of the MSK system. In this work, an eight-channel transmit/receive RF array was built as a multipurpose coil for imaging some of the thus far neglected regions. An extensive coil characterization protocol and first in vivo results of the human wrist, shoulder, elbow, knee, and ankle imaged at 7 T will be presented. Methods: Eight surface loop coils with a dimension ofurn:x-wiley:00942405:media:mp7176:mp7176-math-0001 were machined from FR4 circuit board material. To facilitate easy positioning, two coil clusters, each with four loop elements, were combined to one RF transmit/receive array. An overlapped and shifted arrangement of the coil elements was chosen to reduce the mutual inductance between neighboring coils. A phantom made of body-simulating liquid was used for tuning and matching on the bench. Afterward, the S-parameters were verified on a human wrist, elbow, and shoulder. For safety validation, a detailed compliance test was performed including full wave simulations of the RF field distribution and the corresponding specific absorption rate (SAR) for all joints. In vivo images of four volunteers were assessed with gradient echo and spin echo sequences modified to obtain optimal image contrast, full anatomic coverage, and the highest spatial resolution within a reasonable acquisition time. The performance of the RF coil was additionally evaluated by in vivo B1 mapping. Results: A comparison of B1 per unit power, flip angle distribution, and anatomic images showed a fairly homogeneous excitation for the smaller joints (elbow, wrist, and ankle), while for the larger joints, the shoulder and especially the knee, B1 inhomogeneities and limited penetration depth were more pronounced. However, the greater part of the shoulder joint could be imaged.In vivo images rendered very fine anatomic details such as fascicles of the median nerve and the branching of the nerve bundles. High-resolution images of cartilage, labrum, and tendons could be acquired. Additionally, turbo spin echo (TSE) and inversion recovery sequences performed very well. Conclusions: This study demonstrates that the concept of two four-channel transmit/receive RF arrays can be used as a multipurpose coil for high-resolutionin vivo MR imaging of the musculoskeletal system at 7 T. Not only gradient echo but also typical clinical and SAR-intensive sequences such as STIR and TSE performed well. Imaging of small structures and peripheral nerves could in particular benefit from this technique.}, language = {en} } @article{OrzadaLaddBitz2016, author = {Orzada, Stephan and Ladd, Mark E. and Bitz, Andreas}, title = {A method to approximate maximum local SAR in multichannel transmit MR systems without transmit phase information}, series = {Magnetic Resonance in Medicine}, volume = {78}, journal = {Magnetic Resonance in Medicine}, number = {2}, publisher = {International Society for Magnetic Resonance in Medicine}, issn = {1522-2594}, doi = {10.1002/mrm.26398}, pages = {805 -- 811}, year = {2016}, abstract = {Purpose To calculate local specific absorption rate (SAR) correctly, both the amplitude and phase of the signal in each transmit channel have to be known. In this work, we propose a method to derive a conservative upper bound for the local SAR, with a reasonable safety margin without knowledge of the transmit phases of the channels. Methods The proposed method uses virtual observation points (VOPs). Correction factors are calculated for each set of VOPs that prevent underestimation of local SAR when the VOPs are applied with the correct amplitudes but fixed phases. Results The proposed method proved to be superior to the worst-case calculation based on the maximum eigenvalue of the VOPs. The mean overestimation for six coil setups could be reduced, whereas no underestimation of the maximum local SAR occurred. In the best investigated case, the overestimation could be reduced from a factor of 3.3 to a factor of 1.7. Conclusion The upper bound for the local SAR calculated with the proposed method allows a fast estimation of the local SAR based on power measurements in the transmit channels and facilitates SAR monitoring in systems that do not have the capability to monitor transmit phases}, language = {en} } @article{ChenSchoembergKraffetal.2016, author = {Chen, Bixia and Schoemberg, Tobias and Kraff, Oliver and Dammann, Philipp and Bitz, Andreas and Schlamann, Marc and Quick, Harald H. and Ladd, Mark E. and Sure, Ulrich and Wrede, Karsten H.}, title = {Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {29}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {1352-8661}, doi = {10.1007/s10334-016-0548-1}, pages = {389 -- 398}, year = {2016}, abstract = {Objective This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. Materials and methods The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T₁-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T₂-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. Results Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. Conclusion Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI.}, language = {en} } @article{SchmidtForkmannSinkeetal.2016, author = {Schmidt, K. and Forkmann, K. and Sinke, C. and Gratz, M. and Bitz, Andreas and Bingel, U.}, title = {The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear}, series = {NeuroImage}, volume = {134}, journal = {NeuroImage}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2016.03.026}, pages = {386 -- 395}, year = {2016}, abstract = {Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance.}, language = {en} } @article{BankOrzadaSmitsetal.2015, author = {Bank, Bart L. van de and Orzada, Stephan and Smits, Frits and Lagemaat, Miriam W. and Rodgers, Christopher T. and Bitz, Andreas and Scheenen, Tom W. J.}, title = {Optimized (31) P MRS in the human brain at 7 T with a dedicated RF coil setup}, series = {NMR in Biomedicine}, volume = {28}, journal = {NMR in Biomedicine}, number = {11}, publisher = {Wiley}, address = {Weinheim}, issn = {1099-1492}, doi = {10.1002/nbm.3422}, pages = {1570 -- 1578}, year = {2015}, language = {en} } @article{NoureddineBitzLaddetal.2015, author = {Noureddine, Yacine and Bitz, Andreas and Ladd, Mark E. and Th{\"u}rling, Markus and Ladd, Susanne C. and Schaefers, Gregor and Kraff, Oliver}, title = {Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {28}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {1352-8661}, doi = {10.1007/s10334-015-0499-y}, pages = {577 -- 590}, year = {2015}, language = {en} } @article{LagemaatBreukelsVosetal.2016, author = {Lagemaat, Miriam W. and Breukels, Vincent and Vos, Eline K. and B., Adam and Uden, Mark J. van and Orzada, Stephan and Bitz, Andreas and Maas, Marnix C. and Scheenen, Tom W. J.}, title = {¹H MR spectroscopic imaging of the prostate at 7T using spectral-spatial pulses}, series = {Magnetic Resonance in Medicine}, volume = {75}, journal = {Magnetic Resonance in Medicine}, number = {3}, publisher = {International Society for Magnetic Resonance in Medicine}, issn = {1522-2594}, doi = {10.1002/mrm.25569}, pages = {933 -- 945}, year = {2016}, abstract = {Purpose To assess the feasibility of prostate ¹H MR spectroscopic imaging (MRSI) using low-power spectral-spatial (SPSP) pulses at 7T, exploiting accurate spectral selection and spatial selectivity simultaneously. Methods A double spin-echo sequence was equipped with SPSP refocusing pulses with a spectral selectivity of 1 ppm. Three-dimensional prostate ¹H-MRSI at 7T was performed with the SPSP-MRSI sequence using an 8-channel transmit array coil and an endorectal receive coil in three patients with prostate cancer and in one healthy subject. No additional water or lipid suppression pulses were used. Results Prostate ¹H-MRSI could be obtained well within specific absorption rate (SAR) limits in a clinically feasible time (10 min). Next to the common citrate signals, the prostate spectra exhibited high spermine signals concealing creatine and sometimes also choline. Residual lipid signals were observed at the edges of the prostate because of limitations in spectral and spatial selectivity. Conclusion It is possible to perform prostate ¹H-MRSI at 7T with a SPSP-MRSI sequence while using separate transmit and receive coils. This low-SAR MRSI concept provides the opportunity to increase spatial resolution of MRSI within reasonable scan times.}, language = {en} } @article{VosLagemaatBarentszetal.2014, author = {Vos, E. K. and Lagemaat, M. W. and Barentsz, J. O. and F{\"u}tterer, J. J. and Zamecnik, P. and Roozen, H. and Orzada, S. and Bitz, Andreas and Maas, M. C. and Scheenen, T. W. J.}, title = {Image quality and cancer visibility of T2-weighted Magnetic Resonance Imaging of the prostate at 7 Tesla}, series = {European Radiology}, volume = {24}, journal = {European Radiology}, number = {8}, publisher = {Springer}, address = {Cham}, issn = {1432-1084}, doi = {10.1007/s00330-014-3234-6}, pages = {1950 -- 1958}, year = {2014}, abstract = {Objectives To assess the image quality of T2-weighted (T2w) magnetic resonance imaging of the prostate and the visibility of prostate cancer at 7 Tesla (T). Materials \& methods Seventeen prostate cancer patients underwent T2w imaging at 7T with only an external transmit/receive array coil. Three radiologists independently scored images for image quality, visibility of anatomical structures, and presence of artefacts. Krippendorff's alpha and weighted kappa statistics were used to assess inter-observer agreement. Visibility of prostate cancer lesions was assessed by directly linking the T2w images to the confirmed location of prostate cancer on histopathology. Results T2w imaging at 7T was achievable with 'satisfactory' (3/5) to 'good' (4/5) quality. Visibility of anatomical structures was predominantly scored as 'satisfactory' (3/5) and 'good' (4/5). If artefacts were present, they were mostly motion artefacts and, to a lesser extent, aliasing artefacts and noise. Krippendorff's analysis revealed an α = 0.44 between three readers for the overall image quality scores. Clinically significant cancer lesions in both peripheral zone and transition zone were visible at 7T. Conclusion T2w imaging with satisfactory to good quality can be routinely acquired, and cancer lesions were visible in patients with prostate cancer at 7T using only an external transmit/receive body array coil.}, language = {en} } @article{LagemaatMaasVosetal.2015, author = {Lagemaat, Miriam W. and Maas, Marnix C. and Vos, Eline K. and Bitz, Andreas and Orzada, Stephan and Weiland, Elisabeth and Uden, Mark J. van and Kobus, Thiele and Heerschap, Arend and Scheenen, Tom W. J.}, title = {(31) P MR spectroscopic imaging of the human prostate at 7 T: T1 relaxation times, Nuclear Overhauser Effect, and spectral characterization}, series = {Magnetic Resonance in Medicine}, volume = {73}, journal = {Magnetic Resonance in Medicine}, number = {3}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.25209}, pages = {909 -- 920}, year = {2015}, language = {en} } @article{TheysohnKraffEilersetal.2014, author = {Theysohn, Jens M. and Kraff, Oliver and Eilers, Kristina and Andrade, Dorian and Gerwig, Marcus and Timmann, Dagmar and Schmitt, Franz and Ladd, Mark E. and Ladd, Susanne C. and Bitz, Andreas}, title = {Vestibular effects of a 7 Tesla MRI examination compared to 1.5 T and 0 T in healthy volunteers}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {3}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0092104}, pages = {e92104}, year = {2014}, abstract = {Ultra-high-field MRI (7 Tesla (T) and above) elicits more temporary side-effects compared to 1.5 T and 3 T, e.g. dizziness or "postural instability" even after exiting the scanner. The current study aims to assess quantitatively vestibular performance before and after exposure to different MRI scenarios at 7 T, 1.5 T and 0 T. Sway path and body axis rotation (Unterberger's stepping test) were quantitatively recorded in a total of 46 volunteers before, 2 minutes after, and 15 minutes after different exposure scenarios: 7 T head MRI (n = 27), 7 T no RF (n = 22), 7 T only B₀ (n = 20), 7 T in \& out B₀ (n = 20), 1.5 T no RF (n = 20), 0 T (n = 15). All exposure scenarios lasted 30 minutes except for brief one minute exposure in 7 T in \& out B₀. Both measures were documented utilizing a 3D ultrasound system. During sway path evaluation, the experiment was repeated with eyes both open and closed. Sway paths for all long-lasting 7 T scenarios (normal, no RF, only B₀) with eyes closed were significantly prolonged 2 minutes after exiting the scanner, normalizing after 15 minutes. Brief exposure to 7 T B₀ or 30 minutes exposure to 1.5 T or 0 T did not show significant changes. End positions after Unterberger's stepping test were significantly changed counter-clockwise after all 7 T scenarios, including the brief in \& out B₀ exposure. Shorter exposure resulted in a smaller alteration angle. In contrast to sway path, reversal of changes in body axis rotation was incomplete after 15 minutes. 1.5 T caused no rotational changes. The results show that exposure to the 7 Tesla static magnetic field causes only a temporary dysfunction or "over-compensation" of the vestibular system not measurable at 1.5 or 0 Tesla. Radiofrequency fields, gradient switching, and orthostatic dysregulation do not seem to play a role.}, language = {en} } @article{KraffBitzBreyeretal.2011, author = {Kraff, Oliver and Bitz, Andreas and Breyer, Tobias and Kruszona, Stefan and Maderwald, Stefan and Brote, Irina and Gizewski, Elke R. and Ladd, Mark E. and Quick, Harald H.}, title = {A transmit/receive radiofrequency array for imaging the carotid arteries at 7 Tesla: coil design and first in vivo results}, series = {Investigative Radiology}, volume = {46}, journal = {Investigative Radiology}, number = {4}, publisher = {Wolters Kluwer}, address = {K{\"o}ln}, issn = {1536-0210}, doi = {10.1097/RLI.0b013e318206cee4}, pages = {246 -- 254}, year = {2011}, abstract = {Objective: To develop a transmit/receive radiofrequency (RF) array for magnetic resonance imaging (MRI) of the carotid arteries at 7 T. The prototype is characterized in numerical simulations and bench measurements, and the feasibility of plaque imaging at 7 T is demonstrated in first in vivo images. Materials and Methods: The RF phased array coil consists of 8 surface loop coils. To allow imaging of both sides of the neck, the RF array is divided into 2 coil clusters, each with 4 overlapping loop elements. For safety validation, numerical computations of the RF field distribution and the corresponding specific absorption rate were performed on the basis of a heterogeneous human body model. To validate the coil model, maps of the transmit B1+ field were compared between simulation and measurement. In vivo images of a healthy volunteer and a patient (ulcerating plaque and a 50\% stenosis of the right internal carotid artery) were acquired using a 3-dimensional FLASH sequence with a high isotropic spatial resolution of 0.54 mm as well as using pulse-triggered proton density (PD)/T2-weighted turbo spin echo sequences. Results: Measurements of the S-parameters yielded a reflection and isolation of the coil elements of better than -18 and -13 dB, respectively. Measurements of the g-factor indicated good image quality for parallel imaging acceleration factors up to 2.4. A similar distribution and a very good match of the absolute values were found between the measured and simulated B1+ transmit RF field for the validation of the coil model. In vivo images revealed good signal excitation of both sides of the neck and a high vessel-to-background image contrast for the noncontrast-enhanced 3-dimensional FLASH sequence. Imaging at 7 T could depict the extent of stenosis, and revealed the disruption and ulcer of the plaque. Conclusions: This study demonstrates that 2 four-channel transmit/receive RF arrays for each side of the neck is a suitable concept for in vivo MRI of the carotid arteries at 7 Tesla. Further studies are needed to explore and exploit the full potential of 7 T high-field MRI for carotid atherosclerotic plaque imaging.}, language = {en} } @article{ElQuardiStreckertBitzetal.2011, author = {El Quardi, A. and Streckert, J. and Bitz, Andreas and M{\"u}nkner, S. and Engel, J. and Hansen, V.}, title = {New fin-line devices for radiofrequency exposure of small biological samples in vitro allowing whole-cell patch clamp recordings}, series = {Bioelectromagnetics}, volume = {32}, journal = {Bioelectromagnetics}, number = {2}, publisher = {Wiley}, address = {Weinheim}, issn = {1521-186X}, doi = {10.1002/bem.20621}, pages = {102 -- 112}, year = {2011}, abstract = {The development and analysis of three waveguides for the exposure of small biological in vitro samples to mobile communication signals at 900 MHz (GSM, Global System for Mobile Communications), 1.8 GHz (GSM), and 2 GHz (UMTS, Universal Mobile Telecommunications System) is presented. The waveguides were based on a fin-line concept and the chamber containing the samples bathed in extracellular solution was placed onto two fins with a slot in between, where the exposure field concentrates. Measures were taken to allow for patch clamp recordings during radiofrequency (RF) exposure. The necessary power for the achievement of the maximum desired specific absorption rate (SAR) of 20 W/kg (average over the mass of the solution) was approximately Pin = 50 mW, Pin = 19 mW, and Pin = 18 mW for the 900 MHz, 1800 MHz, and 2 GHz devices, respectively. At 20 W/kg, a slight RF-induced temperature elevation in the solution of no more than 0.3 °C was detected, while no thermal offsets due to the electromagnetic exposure could be detected at the lower SAR settings (2, 0.2, and 0.02 W/kg). A deviation of 10\% from the intended solution volume yielded a calculated SAR deviation of 8\% from the desired value. A maximum ±10\% variation in the local SAR could occur when the position of the patch clamp electrode was altered within the area where the cells to be investigated were located.}, language = {en} } @article{SchlamannVoigtMaderwaldetal.2010, author = {Schlamann, Marc and Voigt, Melanie A. and Maderwald, Stefan and Bitz, Andreas and Kraff, Oliver and Ladd, Susanne C. and Ladd, Mark E. and Forsting, Michael and Wilhelm, Hans}, title = {Exposure to high-field MRI does not affect cognitive function}, series = {Journal of Magnetic Resonance Imaging}, volume = {31}, journal = {Journal of Magnetic Resonance Imaging}, number = {5}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2586}, doi = {10.1002/jmri.22065}, pages = {1061 -- 1066}, year = {2010}, abstract = {Purpose To assess potential cognitive deficits under the influence of static magnetic fields at various field strengths some studies already exist. These studies were not focused on attention as the most vulnerable cognitive function. Additionally, mostly no magnetic resonance imaging (MRI) sequences were performed. Materials and Methods In all, 25 right-handed men were enrolled in this study. All subjects underwent one MRI examination of 63 minutes at 1.5 T and one at 7 T within an interval of 10 to 30 days. The order of the examinations was randomized. Subjects were referred to six standardized neuropsychological tests strictly focused on attention immediately before and after each MRI examination. Differences in neuropsychological variables between the timepoints before and after each MRI examination were assessed and P-values were calculated Results Only six subtests revealed significant differences between pre- and post-MRI. In these tests the subjects achieved better results in post-MRI testing than in pre-MRI testing (P = 0.013-0.032). The other tests revealed no significant results. Conclusion The improvement in post-MRI testing is only explicable as a result of learning effects. MRI examinations, even in ultrahigh-field scanners, do not seem to have any persisting influence on the attention networks of human cognition immediately after exposure.}, language = {en} } @article{BitzZhouElQuardietal.2009, author = {Bitz, Andreas and Zhou, Yi and El Quardi, Abdessamad and Streckert, Joachim}, title = {Occupational Exposure at Mobile Communication Base Station Antenna Sites}, series = {Frequenz}, volume = {63}, journal = {Frequenz}, number = {7-8}, issn = {2191-6349}, doi = {10.1515/FREQ.2009.63.7-8.123}, pages = {123 -- 128}, year = {2009}, language = {en} } @article{SchlamannYoonMaderwaldetal.2010, author = {Schlamann, Marc and Yoon, Min-Suk and Maderwald, Stefan and Pietrzyk, Thomas and Bitz, Andreas and Gerwig, Marcus and Forsting, Michael and Ladd, Susanne C. and Ladd, Mark E. and Kastrup, Oliver}, title = {Short term effects of magnetic resonance imaging on excitability of the motor cortex at 1.5T and 7T}, series = {Academic Radiology}, volume = {17}, journal = {Academic Radiology}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1076-6332}, doi = {10.1016/j.acra.2009.10.004}, pages = {277 -- 281}, year = {2010}, abstract = {Rationale and Objectives The increasing spread of high-field and ultra-high-field magnetic resonance imaging (MRI) scanners has encouraged new discussion of the safety aspects of MRI. Few studies have been published on possible cognitive effects of MRI examinations. The aim of this study was to examine whether changes are measurable after MRI examinations at 1.5 and 7 T by means of transcranial magnetic stimulation (TMS). Materials and Methods TMS was performed in 12 healthy, right-handed male volunteers. First the individual motor threshold was specified, and then the cortical silent period (SP) was measured. Subsequently, the volunteers were exposed to the 1.5-T MRI scanner for 63 minutes using standard sequences. The MRI examination was immediately followed by another TMS session. Fifteen minutes later, TMS was repeated. Four weeks later, the complete setting was repeated using a 7-T scanner. Control conditions included lying in the 1.5-T scanner for 63 minutes without scanning and lying in a separate room for 63 minutes. TMS was performed in the same way in each case. For statistical analysis, Wilcoxon's rank test was performed. Results Immediately after MRI exposure, the SP was highly significantly prolonged in all 12 subjects at 1.5 and 7 T. The motor threshold was significantly increased. Fifteen minutes after the examination, the measured value tended toward normal again. Control conditions revealed no significant differences. Conclusion MRI examinations lead to a transient and highly significant alteration in cortical excitability. This effect does not seem to depend on the strength of the static magnetic field.}, language = {en} } @article{KraffBitzKruszonaetal.2009, author = {Kraff, Oliver and Bitz, Andreas and Kruszona, Stefan and Orzada, Stephan and Schaefer, Lena C. and Theysohn, Jens M. and Maderwald, Stefan and Ladd, Mark E. and Quick, Harald H.}, title = {An eight-channel phased array RF coil for spine MR imaging at 7 T}, series = {Investigative Radiology}, volume = {44}, journal = {Investigative Radiology}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, issn = {1536-0210}, doi = {10.1097/RLI.0b013e3181b24ab7}, pages = {734 -- 740}, year = {2009}, language = {en} } @article{KlompBitzHeerschapetal.2009, author = {Klomp, D. W. J. and Bitz, Andreas and Heerschap, A. and Scheenen, T. W. J.}, title = {Proton spectroscopic imaging of the human prostate at 7 T}, series = {NMR in Biomedicine}, volume = {22}, journal = {NMR in Biomedicine}, number = {5}, issn = {1099-1492}, doi = {10.1002/nbm.1360}, pages = {495 -- 501}, year = {2009}, language = {en} }