@inproceedings{SherelkhanAlibekova2024, author = {Sherelkhan, Dinara and Alibekova, Alina}, title = {EEM spectroscopy characterization of humic substances of biomedical importance}, series = {YRA MedTech Symposium (2024)}, booktitle = {YRA MedTech Symposium (2024)}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {31 -- 32}, year = {2024}, abstract = {Humic substances possess distinctive chemical features enabling their use in many advanced applications, including biomedical fields. No chemicals in nature have the same combination of specific chemical and biological properties as humic substances. Traditional medicine and modern research have demonstrated that humic substances from different sources possess immunomodulatory and anti-inflammatory properties, which makes them suitable for the prevention and treatment of chronic dermatoses, allergic rhinitis, atopic dermatitis, and other conditions characterized by inflammatory and allergic responses [1-4]. The use of humic compounds as agentswith antifungal and antiviral properties shows great potential [5-7].}, language = {en} } @inproceedings{RamanJungHorvathetal.2019, author = {Raman, Aravind Hariharan and Jung, Alexander and Horv{\´a}th, Andr{\´a}s and Becker, Nadine and Staat, Manfred}, title = {Modification of a computer model of human stem cell-derived cardiomyocyte electrophysiology based on Patch-Clamp measurements}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {10 -- 11}, year = {2019}, abstract = {Human induced pluripotent stem cells (hiPSCs) have shown to be promising in disease studies and drug screenings [1]. Cardiomyocytes derived from hiPSCs have been extensively investigated using patch-clamping and optical methods to compare their electromechanical behaviour relative to fully matured adult cells. Mathematical models can be used for translating findings on hiPSCCMs to adult cells [2] or to better understand the mechanisms of various ion channels when a drug is applied [3,4]. Paci et al. (2013) [3] developed the first model of hiPSC-CMs, which they later refined based on new data [3]. The model is based on iCells® (Fujifilm Cellular Dynamics, Inc. (FCDI), Madison WI, USA) but major differences among several cell lines and even within a single cell line have been found and motivate an approach for creating sample-specific models. We have developed an optimisation algorithm that parameterises the conductances (in S/F=Siemens/Farad) of the latest Paci et al. model (2018) [5] using current-voltage data obtained in individual patch-clamp experiments derived from an automated patch clamp system (Patchliner, Nanion Technologies GmbH, Munich).}, language = {en} } @inproceedings{BayerHeschelerArtmannetal.2019, author = {Bayer, Robin and Hescheler, J{\"u}rgen and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Treating arterial hypertension in a cell culture well}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH AachenW}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH AachenW}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {5 -- 6}, year = {2019}, abstract = {Hypertension describes the pathological increase of blood pressure, which is most commonly associated with the increase of vascular wall stiffness [1]. Referring to the "Deutsche Bluthochdruck Liga" this pathology shows a growing trend in our aging society. In order to find novel pharmacological and probably personalized treatments, we want to present a functional approach to study biomechanical properties of a human aortic vascular model. In this method review we will give an overview of recent studies which were carried out with the CellDrum technology [2] and underline the added value to already existing standard procedures known from the field of physiology. Herein described CellDrum technology is a system to measure functional mechanical properties of cell monolayers and thin tissue constructs in-vitro. Additionally, the CellDrum enables to elucidate the mechanical response of cells to pharmacological drugs, toxins and vasoactive agents. Due to its highly flexible polymer support, cells can also be mechanically stimulated by steady and cyclic biaxial stretching.}, language = {en} } @inproceedings{SuryoputriGhaderiLinderetal.2017, author = {Suryoputri, Nathania and Ghaderi, Aydin and Linder, Peter and Kotliar, Konstantin and G{\"o}ttler, Jens and Sorg, Christian and Grimmer, Timo}, title = {Does hemodynamic response function change in Alzheimer disease?}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {92}, year = {2017}, language = {en} } @inproceedings{BlumAlbannaBenninghausetal.2019, author = {Blum, Yannik and Albanna, Walid and Benninghaus, Anne and Kotliar, Konstantin}, title = {Vasomotion in retinal vessels of patients presenting post hemorrhagic hydrocephalus following subarachnoid hemorrhage}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {38 -- 39}, year = {2019}, abstract = {Clearance of blood components and fluid drainage play a crucial role in subarachnoid hemorrhage (SAH) and post hemorrhagic hydrocephalus (PHH). With the involvement of interstitial fluid (ISF) and cerebrospinal fluid (CSF), two pathways for the clearance of fluid and solutes in the brain are proposed. Starting at the level of capillaries, flow of ISF follows along the basement membranes in the walls of cerebral arteries out of the parenchyma to drain into the lymphatics and CSF [1]-[3]. Conversely, it is shown that CSF enters the parenchyma between glial and pial basement membranes of penetrating arteries [4]-[6]. Nevertheless, the involved structures and the contribution of either flow pathway to fluid balance between the subarachnoid space and interstitial space remains controversial. Low frequency oscillations in vascular tone are referred to as vasomotion and corresponding vasomotion waves are modeled as the driving force for flow of ISF out of the parenchyma [7]. Retinal vessel analysis (RVA) allows non-invasive measurement of retinal vessel vasomotion with respect to diameter changes [8]. Thus, the aim of the study is to investigate vasomotion in RVA signals of SAH and PHH patients.}, language = {en} } @inproceedings{NixFrotscherStaat2012, author = {Nix, Yvonne and Frotscher, Ralf and Staat, Manfred}, title = {Implementation of the edge-based smoothed extended finite element method}, series = {Proceedings 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) Vienna, Austria, September 10-14, 2012}, booktitle = {Proceedings 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) Vienna, Austria, September 10-14, 2012}, editor = {Eberhardsteiner, J.}, year = {2012}, language = {en} } @inproceedings{SeboldtBlomeDachwaldetal.2004, author = {Seboldt, Wolfgang and Blome, Hans-Joachim and Dachwald, Bernd and Richter, Lutz}, title = {Proposal for an integrated European space exploration strategy}, series = {55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law}, booktitle = {55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law}, pages = {1 -- 10}, year = {2004}, abstract = {Recently, in his vision for space exploration, US president Bush announced to extend human presence across the solar system, starting with a human return to the Moon as early as 2015 in preparation for human exploration of Mars and other destinations. In Europe, an exploration program, termed AURORA, was established by ESA in 2001 - funded on a voluntary basis by ESA member states - with a clear focus on Mars and the ultimate goal of landing humans on Mars around 2030 in international cooperation. In 2003, a Human Spaceflight Vision Group was appointed by ESA with the task to develop a vision for the role of human spaceflight during the next quarter of the century. The resulting vision focused on a European-led lunar exploration initiative as part of a multi-decade, international effort to strengthen European identity and economy. After a review of the situation in Europe concerning space exploration, the paper outlines an approach for a consistent positioning of exploration within the existing European space programs, identifies destinations, and develops corresponding scenarios for an integrated strategy, starting with robotic missions to the Moon, Mars, and near-Earth asteroids. The interests of the European planetary in-situ science community, which recently met at DLR Cologne, are considered. Potential robotic lunar missions comprise polar landings to search for frozen volatiles and a sample return. For Mars, the implementation of a modest robotic landing mission in 2009 to demonstrate the capability for landing and prepare more ambitious and complex missions is discussed. For near-Earth asteroid exploration, a low-cost in-situ technology demonstration mission could yield important results. All proposed scenarios offer excellent science and could therefore create synergies between ESA's mandatory and optional programs in the area of planetary science and exploration. The paper intents to stimulate the European discussion on space exploration and reflects the personal view of the authors.}, language = {en} } @inproceedings{PhamNguyenStaat2012, author = {Pham, Phu Tinh and Nguyen, Thanh Ngoc and Staat, Manfred}, title = {FEM based shakedown analysis of hardening structures}, series = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, booktitle = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, pages = {870 -- 882}, year = {2012}, language = {en} } @inproceedings{TranStaat2014, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Uncertain multimode failure and limit analysis of shells}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @inproceedings{BhattaraiStaat2016, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Female pelvic floor dysfunction: progress weakening of the support system}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, doi = {10.17185/duepublico/40821}, pages = {11 -- 12}, year = {2016}, abstract = {The structure of the female pelvic floor (PF) is an inter-related system of bony pelvis,muscles, pelvic organs, fascias, ligaments, and nerves with multiple functions. Mechanically, thepelvic organ support system are of two types: (I) supporting system of the levator ani (LA) muscle,and (II) the suspension system of the endopelvic fascia condensation [1], [2]. Significantdenervation injury to the pelvic musculature, depolimerization of the collagen fibrils of the softvaginal hammock, cervical ring and ligaments during pregnancy and vaginal delivery weakens thenormal functions of the pelvic floor. Pelvic organ prolapse, incontinence, sexual dysfunction aresome of the dysfunctions which increases progressively with age and menopause due toweakened support system according to the Integral theory [3]. An improved 3D finite elementmodel of the female pelvic floor as shown in Fig. 1 is constructed that: (I) considers the realisticsupport of the organs to the pelvic side walls, (II) employs the improvement of our previous FEmodel [4], [5] along with the patient based geometries, (III) incorporates the realistic anatomy andboundary conditions of the endopelvic (pubocervical and rectovaginal) fascia, and (IV) considersvarying stiffness of the endopelvic fascia in the craniocaudal direction [3]. Several computationsare carried out on the presented computational model with healthy and damaged supportingtissues, and comparisons are made to understand the physiopathology of the female PF disorders.}, language = {en} } @inproceedings{KahmannHacklWegmannetal.2016, author = {Kahmann, Stephanie and Hackl, Michael and Wegmann, Kilian and M{\"u}ller, Lars-Peter and Staat, Manfred}, title = {Impact of a proximal radial shortening osteotomy on the distribution of forces and the stability of the elbow}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, doi = {10.17185/duepublico/40821}, pages = {7 -- 8}, year = {2016}, abstract = {The human arm consists of the humerus (upper arm), the medial ulna and the lateral radius (forearm). The joint between the humerus and the ulna is called humeroulnar joint and the joint between the humerus and the radius is called humeroradial joint. Lateral and medial collateral ligaments stabilize the elbow. Statistically, 2.5 out of 10,000 people suffer from radial head fractures [1]. In these fractures the cartilage is often affected. Caused by the injured cartilage, degenerative diseases like posttraumatic arthrosis may occur. The resulting pain and reduced range of motion have an impact on the patient's quality of life. Until now, there has not been a treatment which allows typical loads in daily life activities and offers good long-term results. A new surgical approach was developed with the motivation to reduce the progress of the posttraumatic arthrosis. Here, the radius is shortened by 3 mm in the proximal part [2]. By this means, the load of the radius is intended to be reduced due to a load shift to the ulna. Since the radius is the most important stabilizer of the elbow it has to be confirmed that the stability is not affected. In the first test (Fig. 1 left), pressure distributions within the humeroulnar and humeroradial joints a native and a shortened radius were measured using resistive pressure sensors (I5076 and I5027, Tekscan, USA). The humerus was loaded axially in a tension testing machine (Z010, Zwick Roell, Germany) in 50 N steps up to 400 N. From the humerus the load is transmitted through both the radius and the ulna into the hand which is fixed on the ground. In the second test (Fig. 1 right), the joint stability was investigated using a digital image correlation system to measure the displacement of the ulna. Here, the humerus is fixed with a desired flexion angle and the unconstrained forearm lies on the ground. A rope connects the load actuator with a hook fixed in the ulna. A guide roller is used so that the rope pulls the ulna horizontally when a tensile load is applied. This creates a moment about the elbow joint with a maximum value of 7.5 Nm. Measurements were performed with varying flexion angles (0°, 30°, 60°, 90°, 120°). For both tests and each measurement, seven specimens were used. Student's t-test was employed to determine whether the mean values of the measurements in native specimen and operated specimens differ significantly.}, language = {en} } @inproceedings{CarzanaDachwaldNoomen2017, author = {Carzana, Livio and Dachwald, Bernd and Noomen, Ron}, title = {Model and trajectory optimization for an ideal laser-enhanced solar sail}, series = {68th International Astronautical Congress}, booktitle = {68th International Astronautical Congress}, year = {2017}, abstract = {A laser-enhanced solar sail is a solar sail that is not solely propelled by solar radiation but additionally by a laser beam that illuminates the sail. This way, the propulsive acceleration of the sail results from the combined action of the solar and the laser radiation pressure onto the sail. The potential source of the laser beam is a laser satellite that coverts solar power (in the inner solar system) or nuclear power (in the outer solar system) into laser power. Such a laser satellite (or many of them) can orbit anywhere in the solar system and its optimal orbit (or their optimal orbits) for a given mission is a subject for future research. This contribution provides the model for an ideal laser-enhanced solar sail and investigates how a laser can enhance the thrusting capability of such a sail. The term "ideal" means that the solar sail is assumed to be perfectly reflecting and that the laser beam is assumed to have a constant areal power density over the whole sail area. Since a laser beam has a limited divergence, it can provide radiation pressure at much larger solar distances and increase the radiation pressure force into the desired direction. Therefore, laser-enhanced solar sails may make missions feasible, that would otherwise have prohibitively long flight times, e.g. rendezvous missions in the outer solar system. This contribution will also analyze exemplary mission scenarios and present optimial trajectories without laying too much emphasis on the design and operations of the laser satellites. If the mission studies conclude that laser-enhanced solar sails would have advantages with respect to "traditional" solar sails, a detailed study of the laser satellites and the whole system architecture would be the second next step}, language = {en} } @inproceedings{SavitskayaKistaubayevaAkimbekovetal.2013, author = {Savitskaya, Irina S. and Kistaubayeva, Aida S. and Akimbekov, Nuraly S. and Digel, Ilya and Zhubanova, Azhar A.}, title = {Performance of Bio-Composite Carbonized Materials in Probiotic Applications}, series = {World Academy of Science, Engineering and Technology International Journal of Biotechnology and Bioengineering}, volume = {7}, booktitle = {World Academy of Science, Engineering and Technology International Journal of Biotechnology and Bioengineering}, number = {7}, pages = {685 -- 689}, year = {2013}, language = {en} } @inproceedings{FrotscherRaatschenStaat2012, author = {Frotscher, Ralf and Raatschen, Hans-J{\"u}rgen and Staat, Manfred}, title = {Application of an edge-based smoothed finite element method on geometrically non-linear plates of non-linear material}, series = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, booktitle = {Proceedings European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012)}, editor = {Eberhardsteiner, J.}, year = {2012}, language = {en} } @inproceedings{Tepecik2024, author = {Tepecik, Atakan}, title = {AstroBioLab: Review of technical and bioanalytical approaches}, series = {YRA MedTech Symposium (2024)}, booktitle = {YRA MedTech Symposium (2024)}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {33 -- 34}, year = {2024}, abstract = {This study presents the concept of AstroBioLab, an autonomous astrobiological field laboratory tailored for the exploration of (sub)glacial habitats. AstroBioLab is an integral component of the TRIPLE (Technologies for Rapid Ice Penetration and subglacial Lake Exploration) DLR-funded project, aimed at advancing astrobiology research through the development and deployment of innovative technologies. AstroBioLab integrates diverse measurement techniques such as fluorescence microscopy, DNA sequencing and fluorescence spectrometry, while leveraging microfluidics for efficient sample delivery and preparation.}, language = {en} } @inproceedings{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {Limit and shakedown analysis of structures under random strength}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {510 -- 518}, year = {2022}, abstract = {Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables.}, language = {en} } @inproceedings{StaatTran2022, author = {Staat, Manfred and Tran, Ngoc Trinh}, title = {Strain based brittle failure criteria for rocks}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {500 -- 509}, year = {2022}, abstract = {When confining pressure is low or absent, extensional fractures are typical, with fractures occurring on unloaded planes in rock. These "paradox" fractures can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. But this criterion makes unrealistic strength predictions in biaxial compression and tension. A new extension strain criterion overcomes this limitation by adding a weighted principal shear component. The weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr-Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting failure modes, which are unexpected in the understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak P. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.}, language = {en} } @inproceedings{ZingsheimGrimmerOrtneretal.2019, author = {Zingsheim, Jonas and Grimmer, Timo and Ortner, Marion and Schmaderer, Christoph and Hauser, Christine and Kotliar, Konstantin}, title = {Recognition of subjects with mild cognitive impairment (MCI) by the use of retinal arterial vessels.}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {36 -- 37}, year = {2019}, language = {en} } @inproceedings{SchlemmerPorstBassametal.2017, author = {Schlemmer, Katharina and Porst, Dariusz and Bassam, Rasha and Artmann, Gerhard and Digel, Ilya}, title = {Effects of nitric oxide (NO) and ATP on red blood cell phenotype and deformability}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {100 -- 101}, year = {2017}, language = {en} } @inproceedings{RichterBraunsteinStaeudleetal.2018, author = {Richter, Charlotte and Braunstein, Bjoern and St{\"a}udle, Benjamin and Attias, Julia and Suess, Alexander and Weber, T. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices}, series = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, booktitle = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, year = {2018}, language = {en} } @inproceedings{SchneiderAlHakimKayseretal.2017, author = {Schneider, Oliver and Al Hakim, Taher and Kayser, Peter and Digel, Ilya}, title = {Development and trials of a test chamber for ultrasound-assisted sampling of living cells from solid surfaces}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {96 -- 97}, year = {2017}, language = {en} } @inproceedings{BirgelLeschingerWegmannetal.2017, author = {Birgel, Stefan and Leschinger, Tim and Wegmann, Kilian and Staat, Manfred}, title = {Calculation of muscle forces and joint reaction loads in shoulder area via an OpenSim based computer calculation}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {116 -- 117}, year = {2017}, language = {en} }