@article{PennerUsherovichNiedermeieretal.2022, author = {Penner, Crystal and Usherovich, Samuel and Niedermeier, Jana and B{\´e}langer-Champagne, Camille and Trinczek, Michael and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Organic Scintillator-Fibre Sensors for Proton Therapy Dosimetry: SCSF-3HF and EJ-260}, series = {electronics}, volume = {12}, journal = {electronics}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2079-9292}, doi = {10.3390/electronics12010011}, pages = {12 Seiten}, year = {2022}, abstract = {In proton therapy, the dose from secondary neutrons to the patient can contribute to side effects and the creation of secondary cancer. A simple and fast detection system to distinguish between dose from protons and neutrons both in pretreatment verification as well as potentially in vivo monitoring is needed to minimize dose from secondary neutrons. Two 3 mm long, 1 mm diameter organic scintillators were tested for candidacy to be used in a proton-neutron discrimination detector. The SCSF-3HF (1500) scintillating fibre (Kuraray Co. Chiyoda-ku, Tokyo, Japan) and EJ-260 plastic scintillator (Eljen Technology, Sweetwater, TX, USA) were irradiated at the TRIUMF Neutron Facility and the Proton Therapy Research Centre. In the proton beam, we compared the raw Bragg peak and spread-out Bragg peak response to the industry standard Markus chamber detector. Both scintillator sensors exhibited quenching at high LET in the Bragg peak, presenting a peak-to-entrance ratio of 2.59 for the EJ-260 and 2.63 for the SCSF-3HF fibre, compared to 3.70 for the Markus chamber. The SCSF-3HF sensor demonstrated 1.3 times the sensitivity to protons and 3 times the sensitivity to neutrons as compared to the EJ-260 sensor. Combined with our equations relating neutron and proton contributions to dose during proton irradiations, and the application of Birks' quenching correction, these fibres provide valid candidates for inexpensive and replicable proton-neutron discrimination detectors}, language = {en} } @article{TrappLammersEngudaretal.2023, author = {Trapp, Svenja and Lammers, Tom and Engudar, Gokce and Hoehr, Cornelia and Denkova, Antonia G. and Paulßen, Elisabeth and de Kruijff, Robin M.}, title = {Membrane-based microfluidic solvent extraction of Ga-68 from aqueous Zn solutions: towards an automated cyclotron production loop}, series = {EJNMMI Radiopharmacy and Chemistry}, volume = {2023}, journal = {EJNMMI Radiopharmacy and Chemistry}, number = {8, Article number: 9}, publisher = {Springer Nature}, issn = {2365-421X}, doi = {10.1186/s41181-023-00195-2}, pages = {1 -- 14}, year = {2023}, language = {en} } @article{BarbazanHagenbachPaulssenetal.2010, author = {Barbaz{\´a}n, Paula and Hagenbach, Adelheid and Paulßen, Elisabeth and Abram, Ulrich and Carballo, Rosa and Rodriguez-Hermida, Sabina and V{\´a}zquez-L{\´o}pez, Ezequiel M.}, title = {Tricarbonyl Rhenium(I) and Technetium(I) Complexes with Hydrazones Derived from 4,5-Diazafluoren-9-one and 1,10-Phenanthroline-5,6-dione}, series = {European Journal of Inorganic Chemistry}, journal = {European Journal of Inorganic Chemistry}, number = {29}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1099-0682}, doi = {10.1002/ejic.201000522}, pages = {4622 -- 4630}, year = {2010}, abstract = {Tricarbonylrhenium(I) and -technetium(I) halide (halide = Cl and Br) complexes of ligands derived from 4,5-diazafluoren-9-one (df) and 1,10-phenanthroline-5,6-dione (phen) derivatives of benzoic and 2-hydroxybenzoic acid hydrazides have been prepared. The complexes have been characterized by elemental analysis, MS, IR, 1H NMR and absorption and emission UV/Vis spectroscopic methods. The metal centres (ReI and TcI) are coordinated through the nitrogen imine atoms and establish five-membered chelate rings, whereas the hydrazone groups stand uncoordinated. The 1H NMR spectra suggest the same behaviour in solution on the basis of only marginal variations in the chemical shifts of the hydrazine protons.}, language = {en} } @article{PaulssenSchweighoeferAbram2010, author = {Paulßen, Elisabeth and Schweigh{\"o}fer, Philip V. and Abram, Ulrich}, title = {Reactions of [ReOX3(PPh3)2] Complexes (X = Cl, Br) with Phenylacetylene and the Structures of the Products}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie : ZAAC = Journal of inorganic and general chemistry}, volume = {636}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie : ZAAC = Journal of inorganic and general chemistry}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3749}, doi = {10.1002/zaac.200900478}, pages = {779 -- 783}, year = {2010}, abstract = {Oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) react with phenylacetylene under formation of complexes with ylide-type ligands. Compounds of the compositions [ReOCl3(PPh3){C(Ph)C(H)(PPh3)}] (1), [ReOBr3(OPPh3){C(Ph)C(H)(PPh3)}] (2), and [ReOBr3(OPPh3){C(H)C(Ph)(PPh3)}] (3) were isolated and characterized by X-ray diffraction. They contain a ligand, which was formed by a nucleophilic attack of released PPh3 at coordinated phenylacetylene. The structures of the products show that there is no preferable position for this attack. Cleavage of the Re-C bond in 3 and dimerization of the organic ligand resulted in the formation of the [{(PPh3)(H)CC(Ph)}2]2+ cation, which crystallized as its [(ReOBr4)(OReO3)]2- salt.}, language = {en} } @article{PaulssenAlbertoAbram2010, author = {Paulßen, Elisabeth and Alberto, Roger and Abram, Ulrich}, title = {Synthesis, Characterization, and Structures of R3EOTcO3 Complexes (E = C, Si, Ge, Sn, Pb) and Related Compounds}, series = {Inorganic Chemistry}, volume = {49}, journal = {Inorganic Chemistry}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-510X}, doi = {10.1021/ic1001094}, pages = {3525 -- 3530}, year = {2010}, abstract = {AgTcO4 reacts with R3ECl compounds (E = C, Si, Ge, Sn, Pb; R = Me, iPr, tBu, Ph), tBu2SnCl2, or PhMgCl under formation of novel trioxotechnetium(VII) derivatives. The carbon and silicon derivatives readily undergo decomposition, which was proven by 99Tc NMR spectroscopy and the isolation of decomposition products such as [TcOCl3(THF)(OH2)]. Compounds [Ph3GeOTcO3], [(THF)Ph3SnOTcO3], [(O3TcO)SntBu2(OH)]2, and [(THF)4Mg(OTcO3)2] are more stable and were isolated in crystalline form and characterized by X-ray diffraction.}, language = {en} }