@article{Artmann1996, author = {Artmann, Gerhard}, title = {2nd International Conference on Medical Biorheology (ICMB). Shanghai, China, September 13-15, 1995. Shi, Young de, Artmann, Gerhard Michael, Meiselman, Herbert J.}, series = {Biorheology. 33 (1996), H. 6}, journal = {Biorheology. 33 (1996), H. 6}, isbn = {0006-355x}, pages = {505 -- 507}, year = {1996}, language = {en} } @article{DigelDachwaldArtmannetal.2009, author = {Digel, Ilya and Dachwald, Bernd and Artmann, Gerhard and Linder, Peter and Funke, O.}, title = {A concept of a probe for particle analysis and life detection in icy environments}, pages = {1 -- 24}, year = {2009}, language = {en} } @article{Artmann1986, author = {Artmann, Gerhard}, title = {A microscopic photometric method for measuring erythrocyte deformability. Artmann, Gerhard Michael}, series = {Clinical Hemorheology. 6 (1986)}, journal = {Clinical Hemorheology. 6 (1986)}, isbn = {0271-5198}, pages = {617 -- 627}, year = {1986}, language = {en} } @article{ArtmannShiAgostietal.1998, author = {Artmann, Gerhard and Shi, Young de and Agosti, R. and Longhini, E.}, title = {A modified casson equation to characterize blood rheology for hypertension. Shi, Young de; Artmann, Gerhard Michael; Agosti, R.; Longhini, E.}, series = {Clinical Hemorheology Microcirculation. 19 (1998), H. 2}, journal = {Clinical Hemorheology Microcirculation. 19 (1998), H. 2}, isbn = {1386-0291}, pages = {115 -- 127}, year = {1998}, language = {en} } @article{UysalFiratCreutzetal.2022, author = {Uysal, Karya and Firat, Ipek Serat and Creutz, Till and Aydin, Inci Cansu and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes}, series = {membranes}, volume = {2023}, journal = {membranes}, number = {13(1)}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/membranes13010022}, pages = {Artikel 22}, year = {2022}, abstract = {Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5\% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here.}, language = {en} } @article{ArtmannTrzewikAtes2002, author = {Artmann, Gerhard and Trzewik, J{\"u}rgen and Ates, M.}, title = {A novel method to quantify mechanical tension in cell monolayers. Trzewik, J{\"u}rgen; Ates, M., Artmann, Gerhard Michael}, series = {Biomedizinische Technik. 47 (2002), H. Suppl. 1. Pt. 1}, journal = {Biomedizinische Technik. 47 (2002), H. Suppl. 1. Pt. 1}, isbn = {0013-5585}, pages = {379 -- 381}, year = {2002}, language = {en} } @article{ArtmannLiZiemeretal.1996, author = {Artmann, Gerhard and Li, Anlan and Ziemer, J. and Schneider, G. [u.a.]}, title = {A photometric method to analyze induced erythrocyte shape changes. Artmann, Gerhard Michael; Li, Anlan; Ziemer, J.; Schneider, G.; Sahm, U.: ; Ziemer, J.; Schneider, G.; Sahm, U.}, series = {Biorheology. 33 (1996), H. 3}, journal = {Biorheology. 33 (1996), H. 3}, isbn = {0006-355x}, pages = {251 -- 265}, year = {1996}, language = {en} } @article{KaulKoshkaryevArtmannetal.2008, author = {Kaul, D. K. and Koshkaryev, A. and Artmann, Gerhard and Barshtein, G. and Yedgar, S.}, title = {Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance}, series = {American Journal of Physiology : Heart and Circulation Physiology . 295 (2008), H. 4}, volume = {295}, journal = {American Journal of Physiology : Heart and Circulation Physiology . 295 (2008), H. 4}, number = {4}, issn = {1522-1539}, pages = {H1788 -- H1793}, year = {2008}, language = {en} } @article{KozhalakovaZhubanovaMansurovetal.2010, author = {Kozhalakova, A. A. and Zhubanova, Azhar A. and Mansurov, Z. A. and Digel, Ilya and Tazhibayeva, S. M. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Adsorption of bacterial lipopolysaccharides on carbonized rice shell}, series = {Science of Central Asia (2010)}, journal = {Science of Central Asia (2010)}, pages = {50 -- 54}, year = {2010}, language = {en} } @article{UysalCreutzFiratetal.2022, author = {Uysal, Karya and Creutz, Till and Firat, Ipek Seda and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {Bio-functionalized ultra-thin, large-area and waterproof silicone membranes for biomechanical cellular loading and compliance experiments}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, pages = {2213}, year = {2022}, abstract = {Biocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.) must be precisely controlled. The following parameters of membrane fabrication by means of the Floating-on-Water (FoW) method were investigated: (1) PDMS volume, (2) ambient temperature, (3) membrane deflection and (4) membrane mechanical compliance. Significant differences were found between all PDMS volumes and thicknesses tested (p < 0.01). They also differed from the calculated values. At room temperatures between 22 and 26 °C, significant differences in average thickness values were found, as well as a continuous decrease in thicknesses within a 4 °C temperature elevation. No correlation was found between the membrane thickness groups (between 3-4 µm) in terms of deflection and compliance. We successfully present a fabrication method for thin bio-functionalized membranes in conjunction with a four-step quality management system. The results highlight the importance of tight regulation of production parameters through quality control. The use of membranes described here could also become the basis for material testing on thin, viscous layers such as polymers, dyes and adhesives, which goes far beyond biological applications.}, language = {en} } @book{Artmann2008, author = {Artmann, Gerhard}, title = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, year = {2008}, language = {en} } @article{MaggakisKelemenBorkKayseretal.2003, author = {Maggakis-Kelemen, C. and Bork, M. and Kayser, Peter and Biselli, Manfred and Artmann, Gerhard}, title = {Biological and mechanical quality of red blood cells cultured from human umbilical cord blood stem cells}, series = {Medical and biological engineering and computing. 41 (2003), H. 3}, journal = {Medical and biological engineering and computing. 41 (2003), H. 3}, isbn = {0140-0118}, pages = {350 -- 356}, year = {2003}, language = {en} } @book{ArtmannTemizArtmannZhubanovaetal.2018, author = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, title = {Biological, physical and technical basics of cell engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7903-0}, pages = {xxiv, 481 Seiten ; Illustrationen, Diagramme}, year = {2018}, language = {en} } @article{BorkKelemenBisellietal.2000, author = {Bork, M. and Kelemen, C. and Biselli, Manfred and Artmann, Gerhard}, title = {Biophysikalische Charakterisierung ex vivo kultivierter menschlicher Erythrozythen}, series = {Biomedizinische Technik = Biomedical Engineering. 45 (2000), H. s1}, journal = {Biomedizinische Technik = Biomedical Engineering. 45 (2000), H. s1}, isbn = {1862-278X}, pages = {471 -- 472}, year = {2000}, language = {de} } @misc{ArtmannLinderBayeretal.2017, author = {Artmann, Gerhard and Linder, Peter and Bayer, Robin and Gossmann, Matthias}, title = {Celldrum electrode arrangement for measuring mechanical stress [Patent of invention]}, publisher = {WIPO}, address = {Geneva}, pages = {18 Seiten}, year = {2017}, abstract = {The invention pertains to a CellDrum electrode arrangement for measuring mechanical stress, comprising a mechanical holder (1 ) and a non-conductive membrane (4), whereby the membrane (4) is at least partially fixed at its circumference to the mechanical holder (1), keeping it in place when the membrane (4) may bend due to forces acting on the membrane (4), the mechanical holder (1) and the membrane (4) forming a container, whereby the membrane (1) within the container comprises an cell- membrane compound layer or biological material (3) adhered to the deformable membrane 4 which in response to stimulation by an agent may exert mechanical stress to the membrane (4) such that the membrane bending stage changes whereby the container may be filled with an electrolyte, whereby an electric contact (2) is arranged allowing to contact said electrolyte when filled into to the container, whereby within a predefined geometry to the fixing of the membrane (4) an electrode (7) is arranged, whereby the electrode (7) is electrically insulated with respect to the electric contact (2) as well as said electrolyte, whereby mechanical stress due to an agent may be measured as a change in capacitance.}, language = {en} } @article{Artmann2000, author = {Artmann, Gerhard}, title = {Cellular engineering - a challenge for engineers? / Artmann, G. M.}, series = {Biomedizinische Technik = Biomedical Engineering. 45 (2000), H. s1}, journal = {Biomedizinische Technik = Biomedical Engineering. 45 (2000), H. s1}, isbn = {1862-278X}, pages = {449}, year = {2000}, language = {en} } @article{ArtmannKelemenPorstetal.1998, author = {Artmann, Gerhard and Kelemen, C. and Porst, Dariusz and B{\"u}ldt, G.}, title = {Cellular engineering: Crash tests an menschlichen Erythrozyten geben Aufschluß {\"u}ber versteckte Materialeigenschaften zellul{\"a}rer Proteine / Artmann, G. M. ; Kelemen, Ch. ; Porst, D. ; B{\"u}ldt, G. ; Chien, Shu}, series = {Biomedizinische Technik / Biomedical Engineering. 43 (1998), H. s1}, journal = {Biomedizinische Technik / Biomedical Engineering. 43 (1998), H. s1}, isbn = {1862-278}, pages = {446 -- 447}, year = {1998}, language = {en} } @incollection{DigelSadykovTemizArtmannetal.2015, author = {Digel, Ilya and Sadykov, R. and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {Changes in intestinal microflora in rats induced by oral exposure to low lead (II) concentrations}, series = {Lead Exposure and Poisoning: Clinical Symptoms, Medical Management and Preventive Strategies}, booktitle = {Lead Exposure and Poisoning: Clinical Symptoms, Medical Management and Preventive Strategies}, publisher = {Nova Science Publ.}, isbn = {9781634826990}, pages = {75 -- 99}, year = {2015}, language = {en} } @article{ArtmannHueckHollwegetal.2000, author = {Artmann, Gerhard and Hueck, I. S. and Hollweg, H. G. and Schmid-Sch{\"o}nbein, G. W.}, title = {Chlorpromazine modulates the Morphological Macro- and Microstructure of Endothelial Cells. Hueck, I. S.; Hollweg, H. G.; Schmid-Sch{\"o}nbein, G. W.; Artmann, Gerhard Michael}, series = {American Journal of Physiology. Cell Physiology. 278 (2000), H. 5}, journal = {American Journal of Physiology. Cell Physiology. 278 (2000), H. 5}, isbn = {1522-1563}, pages = {873 -- 878}, year = {2000}, language = {en} } @article{ArtmannBurnsCanavesetal.2004, author = {Artmann, Gerhard and Burns, Laura and Canaves, Jaume M. and Temiz Artmann, Ayseg{\"u}l}, title = {Circular dichroism spectra of human hemoglobin reveal a reversible structural transition at body temperature}, series = {European Biophysics Journal. 33 (2004), H. 6}, journal = {European Biophysics Journal. 33 (2004), H. 6}, isbn = {1432-1017}, pages = {490 -- 496}, year = {2004}, language = {en} } @article{DigelTemizArtmannNishikawaetal.2004, author = {Digel, Ilya and Temiz Artmann, Ayseg{\"u}l and Nishikawa, K. and Artmann, Gerhard}, title = {Cluster air-ion effects on bacteria and moulds}, series = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, journal = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, isbn = {0932-4666}, pages = {1040 -- 1041}, year = {2004}, language = {en} } @article{KurzLinderTrzewiketal.2010, author = {Kurz, R. and Linder, Peter and Trzewik, J{\"u}rgen and R{\"u}ffer, M. and Artmann, Gerhard and Digel, Ilya and Rothermel, A. and Robitzki, A. and Temiz Artmann, Ayseg{\"u}l}, title = {Contractile tension and beating rates of self-exciting monolayers and 3D-tissue constructs of neonatal rat cardiomyocytes}, series = {Medical and Biological Engineering and Computing}, volume = {48}, journal = {Medical and Biological Engineering and Computing}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {1741-0444}, doi = {10.1007/s11517-009-0552-y}, pages = {59 -- 65}, year = {2010}, abstract = {The CellDrum technology (The term 'CellDrum technology' includes a couple of slightly different technological setups for measuring lateral mechanical tension in various types of cell monolayers or 3D-tissue constructs) was designed to quantify the contraction rate and mechanical tension of self-exciting cardiac myocytes. Cells were grown either within flexible, circular collagen gels or as monolayer on top of respective 1-mum thin silicone membranes. Membrane and cells were bulged outwards by air pressure. This biaxial strain distribution is rather similar the beating, blood-filled heart. The setup allowed presetting the mechanical residual stress level externally by adjusting the centre deflection, thus, mimicking hypertension in vitro. Tension was measured as oscillating differential pressure change between chamber and environment. A 0.5-mm thick collagen-cardiac myocyte tissue construct induced after 2 days of culturing (initial cell density 2 x 10(4) cells/ml), a mechanical tension of 1.62 +/- 0.17 microN/mm(2). Mechanical load is an important growth regulator in the developing heart, and the orientation and alignment of cardiomyocytes is stress sensitive. Therefore, it was necessary to develop the CellDrum technology with its biaxial stress-strain distribution and defined mechanical boundary conditions. Cells were exposed to strain in two directions, radially and circumferentially, which is similar to biaxial loading in real heart tissues. Thus, from a biomechanical point of view, the system is preferable to previous setups based on uniaxial stretching.}, language = {en} } @article{KurulganDemirciLinderDemircietal.2009, author = {Kurulgan Demirci, Eylem and Linder, Peter and Demirci, Taylan and Trzewik, J{\"u}rgen and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Contractile tension of endothelial cells: An LPS based in-vitro sepsis model}, series = {IUBMB Life. 61 (2009), H. 3}, journal = {IUBMB Life. 61 (2009), H. 3}, publisher = {Wiley}, address = {Weinheim}, isbn = {1521-6543}, pages = {307 -- 308}, year = {2009}, language = {en} } @article{StadlerEmbsDigeletal.2008, author = {Stadler, Andreas M. and Embs, Jan P. and Digel, Ilya and Artmann, Gerhard and Unruh, Tobias and B{\"u}ldt, Georg and Zaccai, Guiseppe}, title = {Cytoplasmic water and hydration layer dynamics in human red blood cells}, series = {Journal of the American Chemical Society. 50 (2008), H. 130}, journal = {Journal of the American Chemical Society. 50 (2008), H. 130}, isbn = {1520-5126}, pages = {16852 -- 16853}, year = {2008}, language = {en} } @article{MaggakisKelemenBiselliArtmann2002, author = {Maggakis-Kelemen, Christina and Biselli, Manfred and Artmann, Gerhard}, title = {Determination of the elastic shear modulus of cultured human red blood cells}, series = {Biomedizinische Technik. 47 (2002), H. Suppl. 1 Pt. 1}, journal = {Biomedizinische Technik. 47 (2002), H. Suppl. 1 Pt. 1}, isbn = {0013-5585}, pages = {106 -- 109}, year = {2002}, language = {en} } @article{SeifarthGossmannGrosseetal.2015, author = {Seifarth, Volker and Goßmann, Matthias and Grosse, J. O. and Becker, C. and Heschel, I. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds}, series = {Urologia Internationalis}, volume = {2015}, journal = {Urologia Internationalis}, number = {95}, publisher = {Karger}, address = {Basel}, issn = {0042-1138}, doi = {10.1159/000368419}, pages = {106 -- 113}, year = {2015}, language = {en} } @article{ArtmannMontanusTeitel1991, author = {Artmann, Gerhard and Montanus, M. and Teitel, P.}, title = {Die photometrische Kapillaraggregation- ein neues Verfahren zur Messung der Erythrozytenaggregation. Montanus, M.; Artmann, Gerhard Michael; Teitel, P.}, series = {Biomedizinische Technik = Biomedical engineering. 36 (1991)}, journal = {Biomedizinische Technik = Biomedical engineering. 36 (1991)}, isbn = {0013-5585}, pages = {213 -- 215}, year = {1991}, language = {de} } @article{ArtmannLi1994, author = {Artmann, Gerhard and Li, Anlan}, title = {Dihydroergocryptine maintains erythrocyte fluidity in acidotic and hyperosmolar suspensions modelling hypoxic and ischemic microcirculation. Li, Anlan; Artmann, Gerhard Michael}, series = {Clinical Hemorheology. 15 (1994), H. 2}, journal = {Clinical Hemorheology. 15 (1994), H. 2}, isbn = {0271-5198}, pages = {133 -- 146}, year = {1994}, language = {en} } @article{ZerlinDigelStadleretal.2007, author = {Zerlin, Kay and Digel, Ilya and Stadler, Andreas M. and B{\"u}ldt, Georg and Zaccai, Guiseppe and Artmann, Gerhard}, title = {Dynamics and interactions of hemoglobin in human red blood cells and concentrated hemoglobin solutions}, series = {Regenerative medicine. 2 (2007), H. 5}, journal = {Regenerative medicine. 2 (2007), H. 5}, isbn = {1746-0751}, pages = {573 -- 573}, year = {2007}, language = {en} } @article{StadlerZerlinDigeletal.2008, author = {Stadler, Andreas M. and Zerlin, Kay and Digel, Ilya and B{\"u}ldt, Georg and Zaccai, Guiseppe and Artmann, Gerhard}, title = {Dynamics and interactions of hemoglobin in red blood cells}, series = {Tissue Engineering Part A. 14 (2008), H. 5}, journal = {Tissue Engineering Part A. 14 (2008), H. 5}, isbn = {1937-3341}, pages = {724 -- 724}, year = {2008}, language = {en} } @inproceedings{SchlemmerPorstBassametal.2017, author = {Schlemmer, Katharina and Porst, Dariusz and Bassam, Rasha and Artmann, Gerhard and Digel, Ilya}, title = {Effects of nitric oxide (NO) and ATP on red blood cell phenotype and deformability}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {100 -- 101}, year = {2017}, language = {en} } @article{ArtmannLiSeipeltetal.1999, author = {Artmann, Gerhard and Li, Anlan and Seipelt, H. and M{\"u}ller, C. [u.a.]}, title = {Effects of salicylic acid derivatives on red blood cell membranes. Li, Anlan; Seipelt, H.; M{\"u}ller, C.;Shi, Yong de; Artmann, Gerhard Michael}, series = {Pharmacology and Toxicology. 85 (1999)}, journal = {Pharmacology and Toxicology. 85 (1999)}, isbn = {0902-9938}, pages = {206 -- 211}, year = {1999}, language = {en} } @article{BassamDigelHescheleretal.2013, author = {Bassam, Rasha and Digel, Ilya and Hescheler, J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {Effects of spermine NONOate and ATP on protein aggregation: light scattering evidences}, series = {BMC Biophysics}, journal = {BMC Biophysics}, publisher = {BioMed Central}, address = {London}, isbn = {2046-1682}, url = {http://nbn-resolving.de/10.1186/2046-1682-6-1}, pages = {1 -- 14}, year = {2013}, language = {en} } @article{BassamHeschelerTemizArtmannetal.2012, author = {Bassam, Rasha and Hescheler, J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Digel, Ilya}, title = {Effects of spermine NONOate and ATP on the thermal stability of hemoglobin}, series = {BMC Biophysics}, volume = {5}, journal = {BMC Biophysics}, publisher = {BioMed Central}, address = {London}, issn = {2046-1682}, doi = {10.1186/2046-1682-5-16}, pages = {Art. 16}, year = {2012}, abstract = {Background Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate), ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb). The effect of these molecules was examined by means of circular dichroism spectrometry (CD) in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml) was estimated via ellipticity change measurements at a heating rate of 1°C/min. Results Major results were: 1) spermine NONOate persistently decreased the hemoglobin unfolding temperature T u irrespectively of the Na + /K + environment, 2) ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature. Conclusion The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell.}, language = {en} } @article{ArtmannHovavGoldfarbetal.1999, author = {Artmann, Gerhard and Hovav, T. and Goldfarb, A. and Yedgar, S. [u.a.]}, title = {Enhanced adherence of beta-thalassaemic erythrocytes to endothelial cells. Hovav, T., Goldfarb, A.; Artmann, Gerhard Michael, Yedgar, S.; Barstein, G.}, series = {British Journal of Haematology. 106 (1999), H. 1}, journal = {British Journal of Haematology. 106 (1999), H. 1}, isbn = {1365-2141}, pages = {178 -- 181}, year = {1999}, language = {en} } @article{ArtmannVogelZinketal.2000, author = {Artmann, Gerhard and Vogel, A. and Zink, S. and Stache, O.}, title = {Entwicklung eines automatisierten, computergesteuerten Permeabilit{\"a}tsanalysators zur Messung an Endothelzellen / Vogel, A. ; Zinke, S. ; Stache, O. ; K{\"o}nigsfeld, J. ; Artmann, G.}, series = {Biomedizinische Technik = Biomedical Engineering. 45 (2000), H. s1}, journal = {Biomedizinische Technik = Biomedical Engineering. 45 (2000), H. s1}, isbn = {1862-278X}, pages = {479 -- 480}, year = {2000}, language = {de} } @techreport{Artmann2004, author = {Artmann, Gerhard}, title = {Escherichia Coli Infektion und Zellsch{\"a}digung - Wie perfekt wirken Antibiotika? : Abschlussbericht zum Projekt 1703701}, publisher = {Technische Informationsbibliothek u. Universit{\"a}tsbibliothek}, address = {J{\"u}lich}, doi = {10.2314/GBV:482527137}, year = {2004}, language = {de} } @article{TrzewikTemizArtmannLinderetal.2004, author = {Trzewik, J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Linder, Peter and Demirci, T. and Digel, Ilya and Artmann, Gerhard}, title = {Evaluation of lateral mechanical tension in thin-film tissue constructs}, series = {Annals of Biomedical Engineering. 32 (2004), H. 9}, journal = {Annals of Biomedical Engineering. 32 (2004), H. 9}, isbn = {1573-9686}, pages = {1243 -- 1251}, year = {2004}, language = {en} } @article{ArtmannTrzewikMallipattuetal.2001, author = {Artmann, Gerhard and Trzewik, J{\"u}rgen and Mallipattu, S. K. and Delano, F. A. [u.a.]}, title = {Evidence for a second valve system in Lymphatics: Endothelial Microvalves. Trzewik, J{\"u}rgen; Mallipattu, S. K.; Artmann, Gerhard Michael; Delano, F. A.; Schmid-Schonbein, G. W}, series = {The FASEB Journal. 15 (2001)}, journal = {The FASEB Journal. 15 (2001)}, isbn = {1530-6860}, pages = {1711 -- 1717}, year = {2001}, language = {en} } @article{ArtmannWitte1991, author = {Artmann, Gerhard and Witte, Ch.}, title = {Expertensystem f{\"u}r Personal Computer zur Strukturbestimmung des Circulus Arteriosus Willisii mittels transkranieller Dopplersonografie. Witte, Ch.; Artmann, Gerhard Michael}, series = {Biomedizinische Technik = Biomedical engineering. 36 (1991)}, journal = {Biomedizinische Technik = Biomedical engineering. 36 (1991)}, isbn = {0013-5585}, pages = {228 -- 230}, year = {1991}, language = {de} } @article{LeimenaArtmannDachwaldetal.2010, author = {Leimena, W. and Artmann, Gerhard and Dachwald, Bernd and Temiz Artmann, Ayseg{\"u}l and Gossmann, Matthias and Digel, Ilya}, title = {Feasibility of an in-situ microbial decontamination of an ice-melting probe}, series = {Eurasian Chemico-Technological Journal. 12 (2010), H. 2}, journal = {Eurasian Chemico-Technological Journal. 12 (2010), H. 2}, isbn = {1562-3920}, pages = {145 -- 150}, year = {2010}, language = {en} } @techreport{Artmann2011, author = {Artmann, Gerhard}, title = {FhprofUnd EasyBioforce Abschlussbericht : Miniaturisierte, integrierte und automatisierte Screening Plattform eines 36-Well-Hochdurchsatz-Testsystems zur funktionellen Kraftmessung an Zell- und Gewebeschichten f{\"u}r die Arzneimittelforschung : Laufzeit des Vorhabens: 01.03.2007 - 31.12.2010}, publisher = {Technische Informationsbibliothek u. Universit{\"a}tsbibliothek}, address = {Aachen}, doi = {10.2314/GBV:782964621}, year = {2011}, language = {de} } @article{ArtmannHueckRossiteretal.2008, author = {Artmann, Gerhard and Hueck, Isgard S. and Rossiter, Katharine and Schmid-Sch{\"o}nbein, Geert W.}, title = {Fluid Shear Attenuates Endothelial Pseudopodia Formation into the Capillary Lumen / Hueck, Isgard S. ; Rossiter, Katharine ; Artman, Gerhard M. ; Schmid-Sch{\"o}nbein, Geert W.}, series = {Microcirculation. 15 (2008), H. 6}, journal = {Microcirculation. 15 (2008), H. 6}, isbn = {1549-8719}, pages = {531 -- 542}, year = {2008}, language = {en} } @article{StadlerDigelEmbsetal.2009, author = {Stadler, Andreas M. and Digel, Ilya and Embs, Jan P. and Unruh, Tobias and Tehei, M. and Zaccai, G. and B{\"u}ldt, G. and Artmann, Gerhard}, title = {From powder to solution : Hydration dependence of human hemoglobin dynamics correlated to body temperature}, series = {Biophysical Journal. 96 (2009), H. 12}, journal = {Biophysical Journal. 96 (2009), H. 12}, publisher = {Cell Press}, address = {Cambridge, Mass.}, isbn = {0006-3495}, pages = {5073 -- 5081}, year = {2009}, language = {en} } @article{ArtmannZang1990, author = {Artmann, Gerhard and Zang, Werner}, title = {Fully automatic measurement of rheologic parameters of red blood cells = Laborautomat zur Messung mechanischer Eigenschaften roter Blutzellen}, series = {Biomedizinische Technik = Biomedical engineering. 35 (1990), H. Suppl. 3}, journal = {Biomedizinische Technik = Biomedical engineering. 35 (1990), H. Suppl. 3}, isbn = {0013-5585}, pages = {94 -- 96}, year = {1990}, language = {en} } @incollection{ArtmannMeruvuKizildagetal.2018, author = {Artmann, Gerhard and Meruvu, Haritha and Kizildag, Sefa and Temiz Artmann, Ayseg{\"u}l}, title = {Functional Toxicology and Pharmacology Test of Cell Induced Mechanical Tensile Stress in 2D and 3D Tissue Cultures}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_7}, pages = {157 -- 192}, year = {2018}, abstract = {Mechanical forces/tensile stresses are critical determinants of cellular growth, differentiation and migration patterns in health and disease. The innovative "CellDrum technology" was designed for measuring mechanical tensile stress of cultured cell monolayers/thin tissue constructs routinely. These are cultivated on very thin silicone membranes in the so-called CellDrum. The cell layers adhere firmly to the membrane and thus transmit the cell forces generated. A CellDrum consists of a cylinder which is sealed from below with a 4 μm thick, biocompatible, functionalized silicone membrane. The weight of cell culture medium bulbs the membrane out downwards. Membrane indentation is measured. When cells contract due to drug action, membrane, cells and medium are lifted upwards. The induced indentation changes allow for lateral drug induced mechanical tension quantification of the micro-tissues. With hiPS-induced (human) Cardiomyocytes (CM) the CellDrum opens new perspectives of individualized cardiac drug testing. Here, monolayers of self-beating hiPS-CMs were grown in CellDrums. Rhythmic contractions of the hiPS-cells induce membrane up-and-down deflections. The recorded cycles allow for single beat amplitude, single beat duration, integration of the single beat amplitude over the beat time and frequency analysis. Dose effects of agonists and antagonists acting on Ca2+ channels were sensitively and highly reproducibly observed. Data were consistent with published reference data as far as they were available. The combination of the CellDrum technology with hiPS-Cardiomyocytes offers a fast, facile and precise system for pharmacological and toxicological studies. It allows new preclinical basic as well as applied research in pharmacolgy and toxicology.}, language = {en} } @article{DemirciKurulganDemirciTrzewiketal.2009, author = {Demirci, Taylan and Kurulgan Demirci, Eylem and Trzewik, J{\"u}rgen and Linder, Peter and Digel, Ilya and Artmann, Gerhard and Sakizli, Meral and Temiz Artmann, Ayseg{\"u}l}, title = {Gene expression profile analysis of 3T3/NIH fibroblasts after one hour mechanical stress}, series = {IUBMB Life. 61 (2009), H. 3}, journal = {IUBMB Life. 61 (2009), H. 3}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {1521-6543}, pages = {311 -- 312}, year = {2009}, language = {en} } @article{KurulganDemirciDemirciTrzewiketal.2011, author = {Kurulgan Demirci, Eylem and Demirci, T. and Trzewik, J{\"u}rgen and Linder, Peter and Karakulah, G. and Artmann, Gerhard and Sakizli, M. and Temiz Artmann, Ayseg{\"u}l}, title = {Genome-Wide Gene Expression Analysis of NIH 3T3 Cell Line Under Mechanical Stimulation}, series = {Cellular and molecular bioengineering. 4 (2011), H. 1}, journal = {Cellular and molecular bioengineering. 4 (2011), H. 1}, publisher = {Springer}, address = {Berlin}, isbn = {1865-5025}, pages = {46 -- 55}, year = {2011}, language = {en} } @article{ArtmannSchikarsky1993, author = {Artmann, Gerhard and Schikarsky, C.}, title = {Ginkgo Biloba extract (EGb 761) protects red blood cells from oxidative damage. Artmann, Gerhard Michael; Schikarsky, C.}, series = {Clinical Hemorheology. 13 (1993), H. 4}, journal = {Clinical Hemorheology. 13 (1993), H. 4}, isbn = {0271-5198}, pages = {529 -- 539}, year = {1993}, language = {en} } @incollection{DuongSeifarthTemizArtmannetal.2018, author = {Duong, Minh Tuan and Seifarth, Volker and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Staat, Manfred}, title = {Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_9}, pages = {209 -- 232}, year = {2018}, abstract = {Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries.}, language = {en} }