@article{ŠakićMarinkovićButenwegetal.2023, author = {Šakić, Bogdan and Marinković, Marko and Butenweg, Christoph and Klinkel, Sven}, title = {Influence of slab deflection on the out-of-plane capacity of unreinforced masonry partition walls}, series = {Engineering Structures}, volume = {276}, journal = {Engineering Structures}, editor = {Yang, J.}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2022.115342}, year = {2023}, abstract = {Severe damage of non-structural elements is noticed in previous earthquakes, causing high economic losses and posing a life threat for the people. Masonry partition walls are one of the most commonly used non-structural elements. Therefore, their behaviour under earthquake loading in out-of-plane (OOP) direction is investigated by several researches in the past years. However, none of the existing experimental campaigns or analytical approaches consider the influence of prior slab deflection on OOP response of partition walls. Moreover, none of the existing construction techniques for the connection of partition walls with surrounding reinforced concrete (RC) is investigated for the combined slab deflection and OOP loading. However, the inevitable time-dependent behaviour of RC slabs leads to high values of final slab deflections which can further influence boundary conditions of partition walls. Therefore, a comprehensive study on the influence of slab deflection on the OOP capacity of masonry partitions is conducted. In the first step, experimental tests are carried out. Results of experimental tests are further used for the calibration of the numerical model employed for a parametric study. Based on the results, behaviour under combined loading for different construction techniques is explained. The results show that slab deflection leads either to severe damage or to a high reduction of OOP capacity. Existing practical solutions do not account for these effects. In this contribution, recommendations to overcome the problems of combined slab deflection and OOP loading on masonry partition walls are given. Possible interaction of in-plane (IP) loading, with the combined slab deflection and OOP loading on partition walls, is not investigated in this study.}, language = {en} } @article{OezsoyluKizildagSchoeningetal.2020, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Differential chemical imaging of extracellular acidification within microfluidic channels using a plasma-functionalized light-addressable potentiometric sensor (LAPS)}, series = {Physics in Medicine}, volume = {10}, journal = {Physics in Medicine}, number = {100030}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-4510}, doi = {10.1016/j.phmed.2020.100030}, pages = {8}, year = {2020}, abstract = {Extracellular acidification is a basic indicator for alterations in two vital metabolic pathways: glycolysis and cellular respiration. Measuring these alterations by monitoring extracellular acidification using cell-based biosensors such as LAPS plays an important role in studying these pathways whose disorders are associated with numerous diseases including cancer. However, the surface of the biosensors must be specially tailored to ensure high cell compatibility so that cells can represent more in vivo-like behavior, which is critical to gain more realistic in vitro results from the analyses, e.g., drug discovery experiments. In this work, O2 plasma patterning on the LAPS surface is studied to enhance surface features of the sensor chip, e.g., wettability and biofunctionality. The surface treated with O2 plasma for 30 s exhibits enhanced cytocompatibility for adherent CHO-K1 cells, which promotes cell spreading and proliferation. The plasma-modified LAPS chip is then integrated into a microfluidic system, which provides two identical channels to facilitate differential measurements of the extracellular acidification of CHO-K1 cells. To the best of our knowledge, it is the first time that extracellular acidification within microfluidic channels is quantitatively visualized as differential (bio-)chemical images.}, language = {en} } @article{OezsoyluKizildagSchoeningetal.2019, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Effect of plasma treatment on the sensor properties of a light-addressable potentiometric sensor (LAPS)}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {20}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900259}, pages = {8 Seiten}, year = {2019}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment.}, language = {en} } @article{OehlschlaegerSteinbergSehretal.2005, author = {{\"O}hlschl{\"a}ger, Peter and Steinberg, Thorsten and Sehr, Peter and Osen, Wolfram}, title = {Modification of HPV 16 E7 genes: correlation between the level of protein expression and CTL response after immunization of C57BL/6 mice / Steinberg, Thorsten ; {\"O}hlschl{\"a}ger, Peter ; Sehr, Peter ; Osen, Wolfram ; Gissmann, Lutz}, series = {Vaccine. 23 (2005), H. 9}, journal = {Vaccine. 23 (2005), H. 9}, isbn = {0264-410X}, pages = {1149 -- 1157}, year = {2005}, language = {en} } @article{OehlschlaegerSpiesAlvarezetal.2011, author = {{\"O}hlschl{\"a}ger, Peter and Spies, Elmar and Alvarez, Gerardo and Quetting, Michael and Groettrup, Marcus}, title = {The combination of TLR-9 adjuvantation and electroporation-mediated delivery enhances in vivo antitumor responses after vaccination with HPV-16 E7 encoding DNA}, series = {International Journal of Cancer. 128 (2011), H. 2}, journal = {International Journal of Cancer. 128 (2011), H. 2}, publisher = {Wiley}, address = {Weinheim}, isbn = {1097-0215}, pages = {473 -- 481}, year = {2011}, language = {en} } @article{OehlschlaegerQuettingAlvarezetal.2009, author = {{\"O}hlschl{\"a}ger, Peter and Quetting, Michael and Alvarez, Gerardo and D{\"u}rst, Matthias and Gissmann, Lutz and Kaufmann, Andreas M.}, title = {Enhancement of immunogenicity of a therapeutic cervical cancer DNA-based vaccine by co-application of sequence-optimized genetic adjuvants}, series = {International Journal of Cancer}, volume = {125}, journal = {International Journal of Cancer}, number = {1}, publisher = {Wiley}, address = {Weinheim}, isbn = {1097-0215}, pages = {189 -- 198}, year = {2009}, language = {en} } @article{OehlschlaegerPesOsenetal.2006, author = {{\"O}hlschl{\"a}ger, Peter and Pes, Michaela and Osen, Wolfram and D{\"u}rst, Matthias}, title = {An improved rearranged Human Papillomavirus Type 16 E7 DNA vaccine candidate (HPV-16 E7SH) induces an E7 wildtype-specific T cell response / {\"O}hlschl{\"a}ger, Peter ; Pes, Michaela ; Osen, Wolfram ; D{\"u}rst, Matthias ; Schneider, Achim ; Gissmann, Lutz ; Kaufman}, series = {Vaccine. 24 (2006), H. 15}, journal = {Vaccine. 24 (2006), H. 15}, isbn = {0264-410X}, pages = {2880 -- 2893}, year = {2006}, language = {en} } @article{OehlschlaegerOsenPeileretal.2001, author = {{\"O}hlschl{\"a}ger, Peter and Osen, Wolfram and Peiler, Tanja and Caldeira, Sandra}, title = {A DNA vaccine based on a shuffled E7 oncogene of the human papillomavirus type 16 (HPV 16) induces E7-specific cytotoxic T cells but lacks transforming activity / Osen, Wolfram ; Peiler, Tanja ; {\"O}hlschl{\"a}ger, Peter ; Caldeira, Sandra ; Faath, Stefan ; Mich}, series = {Vaccine. 19 (2001), H. 20}, journal = {Vaccine. 19 (2001), H. 20}, isbn = {0264-410X}, pages = {4276 -- 4286}, year = {2001}, language = {en} } @article{OehlschlaegerOsenDelletal.2003, author = {{\"O}hlschl{\"a}ger, Peter and Osen, Wolfram and Dell, Kerstin and Faath, Stefan}, title = {Human papillomavirus type 16 L1 capsomeres induce L1-specific cytotoxic T lymphocytes and tumor regression in C57BL/6 mice / {\"O}hlschl{\"a}ger, Peter ; Osen, Wolfram ; Dell, Kerstin ; Faath, Stefan ; Garcea Robert L: ; Jochmus, Ingrid ; M{\"u}ller, Martin, Pawlita,}, series = {Journal of Virology. 77 (2003), H. 8}, journal = {Journal of Virology. 77 (2003), H. 8}, isbn = {1098-5514}, pages = {4635 -- 4645}, year = {2003}, language = {en} } @article{OehlschlaegerMichelOsenetal.2002, author = {{\"O}hlschl{\"a}ger, Peter and Michel, Nico and Osen, Wolfram and Freyschmidt, Eva-Jasmin}, title = {T cell response to human papillomavirus 16 E7 in mice: comparison of Cr release assay, intracellular IFN-gamma production, ELISPOT and tetramer staining / Michel, Nico ; {\"O}hlschl{\"a}ger, Peter ; Osen, Wolfram ; Freyschmidt, Eva-Jasmin ; Gut{\"o}hrlein, Heidrun ;}, series = {Intervirology. 45 (2002)}, journal = {Intervirology. 45 (2002)}, isbn = {1423-0100}, pages = {290 -- 299}, year = {2002}, language = {en} } @article{OehlschlaegerCorvinusOrthetal.2005, author = {{\"O}hlschl{\"a}ger, Peter and Corvinus, Florian M. and Orth, Carina and Moriggl, Richard}, title = {Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth / Corvinus, Florian, Moriggl, Richard ; Tsareva, Svetlana A. ; Wagner, Stefan ; Pfitzner, Edith B. ; Baus, Daniela ; Kaufmann, Roland : Huber, Luka}, series = {Neoplasia. 7 (2005), H. 6}, journal = {Neoplasia. 7 (2005), H. 6}, isbn = {1476-5586}, pages = {545 -- 555}, year = {2005}, language = {en} } @article{ZischankHeidlerWiesingeretal.2004, author = {Zischank, Wolfgang J. and Heidler, Fridolin and Wiesinger, J. and Metwally, I. and Kern, Alexander and Seevers, M.}, title = {Laboratory simulation of direct lightning strokes to a modeled building : measurement of magnetic fields and included voltages}, series = {Journal of electrostatics. 60 (2004), H. 2 - 4}, journal = {Journal of electrostatics. 60 (2004), H. 2 - 4}, isbn = {0304-3886}, pages = {223 -- 232}, year = {2004}, language = {en} } @article{Zimmermann2007, author = {Zimmermann, Doris}, title = {[Kapitel 7] : Externes Rechnungswesen}, series = {Business-Management f{\"u}r Ingenieure : beurteilen - entscheiden - gestalten / Rolf Grap (Hrsg.). - (REFA-Fachbuchreihe Unternehmensentwicklung)}, journal = {Business-Management f{\"u}r Ingenieure : beurteilen - entscheiden - gestalten / Rolf Grap (Hrsg.). - (REFA-Fachbuchreihe Unternehmensentwicklung)}, publisher = {Hanser}, address = {M{\"u}nchen}, isbn = {978-3-446-41256-9}, pages = {208 -- 273}, year = {2007}, language = {de} } @article{ZillerDoering2004, author = {Ziller, Claudia and D{\"o}ring, Bernd}, title = {Doppelfassaden - vom Experimentalmodell zum Massanzug}, series = {TAB Technik am Bau}, volume = {Bd. 35}, journal = {TAB Technik am Bau}, number = {H. 12}, issn = {0341-2032}, pages = {58 -- 63}, year = {2004}, language = {de} } @article{ZientzBongaertsUnden1998, author = {Zientz, Evelyn and Bongaerts, Johannes and Unden, Gottfried}, title = {Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system}, series = {Journal of bacteriology}, volume = {Vol. 180}, journal = {Journal of bacteriology}, number = {No. 20}, issn = {1098-5530 (E-Journal); 0021-9193 (Print)}, pages = {5421 -- 5425}, year = {1998}, language = {en} } @article{ZiemonsKleinesErkenetal.1997, author = {Ziemons, Karl and Kleines, H. and Erken, I. and Knoben, J. and Zwoll, K.}, title = {IME-DV Projekt: M-FIRBe, Multi-Modality Functional Imaging for Brain Research}, series = {Bildverarbeitung f{\"u}r die Medizin : Algorithmen - Systeme - Anwendungen}, journal = {Bildverarbeitung f{\"u}r die Medizin : Algorithmen - Systeme - Anwendungen}, editor = {Lehmann, Thomas}, publisher = {Verl. der. Augustinus-Buchh.}, address = {Aachen}, isbn = {3-86073-519-5}, pages = {363 -- 366}, year = {1997}, language = {de} } @article{ZiemonsHerzogFeinendegen1990, author = {Ziemons, Karl and Herzog, H. and Feinendegen, L. E.}, title = {Iterative image reconstruction with weighted pixel contribution to projection element}, series = {European Journal of Nuclear Medicine}, volume = {16}, journal = {European Journal of Nuclear Medicine}, number = {7}, isbn = {1619-7089}, pages = {403 -- 403}, year = {1990}, language = {en} } @article{ZiemonsHerzogBosettietal.1992, author = {Ziemons, Karl and Herzog, H. and Bosetti, P. and Feinendegen, L. E.}, title = {Iterative image reconstruction with weighted pixel contribution to projection elements}, series = {European Journal of Nuclear Medicine}, volume = {19}, journal = {European Journal of Nuclear Medicine}, number = {8}, isbn = {1619-7089}, pages = {588 -- 588}, year = {1992}, language = {en} } @article{ZiemonsHeinrichsStreunetal.2004, author = {Ziemons, Karl and Heinrichs, U. and Streun, M. and Pietrzyk, U.}, title = {Validation of GEANT3 simulation studies with a dual-head PMT ClearPET™ prototype}, series = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5}, journal = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5}, issn = {1082-3654}, pages = {3053 -- 3056}, year = {2004}, abstract = {The ClearPET™ project is proposed by working groups of the Crystal Clear Collaboration (CCC) to develop a 2nd generation high performance small animal positron emission tomograph (PET). High sensitivity and high spatial resolution is foreseen for the ClearPET™ camera by using a phoswich arrangement combining mixed lutetium yttrium aluminum perovskite (LuYAP:Ce) and lutetium oxyorthosilicate (LSO) scintillating crystals. Design optimizations for the first photomultiplier tube (PMT) based ClearPET camera are done with a Monte-Carlo simulation package implemented on GEANT3 (CERN, Geneva, Switzerland). A dual-head prototype has been built to test the frontend electronics and was used to validate the implementation of the GEANT3 simulation tool. Multiple simulations were performed following the experimental protocols to measure the intrinsic resolution and the sensitivity profile in axial and radial direction. Including a mean energy resolution of about 27.0\% the simulated intrinsic resolution is about (1.41±0.11)mm compared to the measured of (1.48±0.06)mm. The simulated sensitivity profiles show a mean square deviation of 12.6\% in axial direction and 3.6\% in radial direction. Satisfactorily these results are representative for all designs and confirm the scanner geometry.}, language = {en} } @article{ZiemonsBruyndonckxPerezetal.2008, author = {Ziemons, Karl and Bruyndonckx, P. and Perez, J. M. and Pietrzyk, U. and Rato, P. and Tavernier, S.}, title = {Beyond ClearPET: Next Aims}, series = {5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro Symposium Proceedings ISBI 2008}, journal = {5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro Symposium Proceedings ISBI 2008}, isbn = {978-1-4244-2003-2}, pages = {1421 -- 1424}, year = {2008}, abstract = {The CRYSTAL CLEAR collaboration, in short CCC, is a consortium of 12 academic institutions, mainly from Europe, joining efforts in the area of developing instrumentation for nuclear medicine and medical imaging. In the framework of the CCC a high performance small animal PET system, called ClearPET, was developed by using new technologies in electronics and crystals in a phoswich arrangement combining two types of lutetium- based scintillator materials: LSO:Ce and LuYAP:Ce. Our next aim will be the development of hybrid image systems. Hybrid MR-PET imaging has many unique advantages for brain research. This has sparked a new research line within CCC for the development of novel MR-PET compatible technologies. MRI is not as sensitive as PET but PET has poorer spatial resolution than MRI. Two major advantages of PET are sensitivity and its ability to acquire metabolic information. To assess these innovations, the development of a 9.4T hybrid animal MR-PET scanner is proposed based on an existing 9.4T MR scanner that will be adapted to enable simultaneous acquisition of MR and PET data using cutting- edge technology for both MR and PET.}, language = {en} } @article{ZiemonsBerghoffLanskeetal.1988, author = {Ziemons, Karl and Berghoff, G. and Lanske, D. and Schultze, K.}, title = {Strangeness production in deep inelastic muon-nucleon scattering}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, volume = {23}, journal = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, number = {5}, isbn = {0420-0195}, pages = {T309 -- T309}, year = {1988}, language = {en} } @article{ZiemonsAuffrayBarbieretal.2005, author = {Ziemons, Karl and Auffray, E. and Barbier, R. and Brandenburg, G. and Bruyndonckx, P.}, title = {The ClearPET™ project: Development of a 2nd generation high-performance small animal PET scanner}, series = {Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {537}, journal = {Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {1-2}, issn = {0168-9002}, pages = {307 -- 311}, year = {2005}, abstract = {Second generation high-performance PET scanners, called ClearPET™1, have been developed by working groups of the Crystal Clear Collaboration (CCC). High sensitivity and high spatial resolution for the ClearPET camera is achieved by using a phoswich arrangement combining two different types of lutetium-based scintillator materials: LSO from CTI and LuYAP:Ce from the CCC (ISTC project). In a first ClearPET prototype, phoswich arrangements of 8×8 crystals of 2×2×10 mm3 are coupled to multi-channel photomultiplier tubes (Hamamatsu R7600). A unit of four PMTs arranged in-line represents one of 20 sectors of the ring design. The opening diameter of the ring is 120 mm, the axial detector length is 110 mm.The PMT pulses are digitized by free-running ADCs and digital data processing determines the gamma energy, the phoswich layer and even the exact pulse starting time, which is subsequently used for coincidence detection. The gantry allows rotation of the detector modules around the field of view. Preliminary data shows a correct identification of the crystal layer about (98±1)\%. Typically the energy resolution is (23.3±0.5)\% for the luyap layer and (15.4±0.4)\% for the lso layer. early studies showed the timing resolution of 2 ns FWHM and 4.8 ns FWTM. the intrinsic spatial resolution ranges from 1.37 mm to 1.61 mm full-width of half-maximum (FWHM) with a mean of 1.48 mm FWHM. further improvements in image and energy resolution are expected when the system geometry is fully modeled.}, language = {en} } @article{ZiemonsAuffrayBarbieretal.2004, author = {Ziemons, Karl and Auffray, E. and Barbier, R. and Brandenburg, G.}, title = {The ClearPET TM LSO/LuYAP phoswich scanner: a high performance small animal PET system}, series = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2003 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, issn = {1082-3654}, pages = {1728 -- 1732}, year = {2004}, abstract = {A 2nd generation high performance small animal PET scanner, called ClearPET™, has been designed and a first prototype is built by working groups of the Crystal Clear Collaboration (CCC). In order to achieve high sensitivity and maintain good uniform spatial resolution over the field of view in high resolution PET systems, it is necessary to extract the depth of interaction (DOI) information and correct for spatial degradation. The design of the first ClearPET™ Demonstrator based on the use of the multi-anode photomultiplier tube (Hamamatsu R7600-M64) and a LSO/LuYAP phoswich matrix. The two crystal layers of 8*8 crystals (2*2*10 mm3) are stacked on each other and mounted without light guide as one to one on the PMT. A unit of four PMTs arranged in-line represents one of 20 sectors of the ring design. The opening diameter of the crystal ring is 137 mm, the axial detector length is 110 mm. The PMT pulses are digitized by free-running ADCs and digital data processing determines the gamma energy, the phoswich layer and even the pulse arrival time. Single gamma interactions are recorded and coincidences are found by software. The gantry allows rotation of the detector modules around the field of view. The measurements have been done using the first LSO/LuYAP detector cassettes.}, language = {en} } @article{ZiemonsAchtenAuffrayetal.2004, author = {Ziemons, Karl and Achten, R. and Auffray, E. and M{\"u}ller-Veggian, Mattea}, title = {The ClearPET™ neuro scanner: a dedicated LSO/LuYAP phoswich small animal PET scanner}, series = {2004 IEEE Nuclear Science Symposium conference record : Nuclear Science Symposium, Medical Imaging Conference ; 16 - 22 October 2004, Rome, Italy ; [including the Symposium on Nuclear Power System (SNPS), 14th Room Temperature Semiconductor X- and Gamma-Ray Detectors Workshop and special focus workshops] / NPSS, Nuclear \& Plasma Sciences Society. Guest ed.: J. Anthony Seibert}, journal = {2004 IEEE Nuclear Science Symposium conference record : Nuclear Science Symposium, Medical Imaging Conference ; 16 - 22 October 2004, Rome, Italy ; [including the Symposium on Nuclear Power System (SNPS), 14th Room Temperature Semiconductor X- and Gamma-Ray Detectors Workshop and special focus workshops] / NPSS, Nuclear \& Plasma Sciences Society. Guest ed.: J. Anthony Seibert}, publisher = {IEEE Operations Center}, address = {Piscataway, NJ}, issn = {1082-3654}, pages = {2430 -- 2433}, year = {2004}, language = {en} } @article{Ziemons1987, author = {Ziemons, Karl}, title = {Jet production and fragmentation properties in deep inelastic muon scattering}, series = {Zeitschrift f{\"u}r Physik C : Particles and Fields}, volume = {36}, journal = {Zeitschrift f{\"u}r Physik C : Particles and Fields}, number = {4}, isbn = {0170-9739}, pages = {527 -- 543}, year = {1987}, language = {en} } @article{Ziemons1988, author = {Ziemons, Karl}, title = {A measurement of the spin asymmetry of the structure function g1 in deep inelastic muon-proton scattering}, series = {Physics Letters B}, volume = {206}, journal = {Physics Letters B}, number = {2}, isbn = {0370-2693}, pages = {364 -- 370}, year = {1988}, abstract = {The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (0.01