@inproceedings{LindenlaufHoefkenSchuba2015, author = {Lindenlauf, Simon and H{\"o}fken, Hans-Wilhelm and Schuba, Marko}, title = {Cold Boot Attacks on DDR2 and DDR3 SDRAM}, series = {10th International Conference on Availability, Reliability and Security (ARES) 2015}, booktitle = {10th International Conference on Availability, Reliability and Security (ARES) 2015}, doi = {10.1109/ARES.2015.28}, pages = {287 -- 292}, year = {2015}, language = {en} } @inproceedings{GranatHoefkenSchuba2017, author = {Granat, Andreas and H{\"o}fken, Hans-Wilhelm and Schuba, Marko}, title = {Intrusion Detection of the ICS Protocol EtherCAT}, pages = {1 -- 5}, year = {2017}, abstract = {Control mechanisms like Industrial Controls Systems (ICS) and its subgroup SCADA (Supervisory Control and Data Acquisition) are a prerequisite to automate industrial processes. While protection of ICS on process management level is relatively straightforward - well known office IT security mechanisms can be used - protection on field bus level is harder to achieve as there are real-time and production requirements like 24x7 to consider. One option to improve security on field bus level is to introduce controls that help to detect and to react on attacks. This paper introduces an initial set of intrusion detection mechanisms for the field bus protocol EtherCAT. To this end existing Ethernet attack vectors including packet injection and man-in-the-middle attacks are tested in an EtherCAT environment, where they could interrupt the EtherCAT network and may even cause physical damage. Based on the signatures of such attacks, a preprocessor and new rule options are defined for the open source intrusion detection system Snort demonstrating the general feasibility of intrusion detection on field bus level.}, language = {en} } @inproceedings{GligorevicJostWalter2009, author = {Gligorevic, Snjezana and Jost, T. and Walter, Michael}, title = {Scatterer based airport surface channel model}, series = {IEEE/AIAA 28th Digital Avionics Systems Conference : DASC '09 ; 23 - 29 [i.e. 25 - 29] Oct. 2009, Orlando, Fla.}, booktitle = {IEEE/AIAA 28th Digital Avionics Systems Conference : DASC '09 ; 23 - 29 [i.e. 25 - 29] Oct. 2009, Orlando, Fla.}, organization = {Institute of Electrical and Electronics Engineers}, isbn = {978-1-4244-4078-8}, pages = {4C2-1 -- 4C2-10}, year = {2009}, language = {en} } @inproceedings{BraunHoefkenSchubaetal.2015, author = {Braun, Sebastian and H{\"o}fken, Hans-Wilhelm and Schuba, Marko and Breuer, Michael}, title = {Forensische Sicherung von DSLRoutern}, series = {Proceedings of D-A-CH Security 2015. St. Augustin 8. und 9. September 2015}, booktitle = {Proceedings of D-A-CH Security 2015. St. Augustin 8. und 9. September 2015}, pages = {11 S.}, year = {2015}, language = {de} } @inproceedings{SchifferFerreinLakemeyer2011, author = {Schiffer, Stefan and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {Fuzzy representations and control for domestic service robots in Golog}, series = {Intelligent robotics and applications : 4th International conference, ICIRA 2011, Aachen, Germany, December 6-8, 2011, proceedings, part I. (Lecture notes in computer science ; 7102)}, booktitle = {Intelligent robotics and applications : 4th International conference, ICIRA 2011, Aachen, Germany, December 6-8, 2011, proceedings, part I. (Lecture notes in computer science ; 7102)}, publisher = {ACM}, address = {New York}, isbn = {978-3-642-25486-4}, doi = {10.1007/978-3-642-25489-5_24}, pages = {241 -- 250}, year = {2011}, abstract = {In the RoboCup@Home domestic service robot competition, complex tasks such as "get the cup from the kitchen and bring it to the living room" or "find me this and that object in the apartment" have to be accomplished. At these competitions the robots may only be instructed by natural language. As humans use qualitative concepts such as "near" or "far", the robot needs to cope with them, too. For our domestic robot, we use the robot programming and plan language Readylog, our variant of Golog. In previous work we extended the action language Golog, which was developed for the high-level control of agents and robots, with fuzzy concepts and showed how to embed fuzzy controllers in Golog. In this paper, we demonstrate how these notions can be fruitfully applied to two domestic service robotic scenarios. In the first application, we demonstrate how qualitative fluents based on a fuzzy set semantics can be deployed. In the second program, we show an example of a fuzzy controller for a follow-a-person task.}, language = {en} } @inproceedings{LogenHoefkenSchuba2012, author = {Logen, Steffen and H{\"o}fken, Hans-Wilhelm and Schuba, Marko}, title = {Simplifying RAM Forensics : A GUI and Extensions for the Volatility Framework}, series = {2012 Seventh International Conference on Availability, Reliability and Security (ARES), 20-24 August 2012, Prague, Czech Republic}, booktitle = {2012 Seventh International Conference on Availability, Reliability and Security (ARES), 20-24 August 2012, Prague, Czech Republic}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4673-2244-7}, doi = {10.1109/ARES.2012.12}, pages = {620 -- 624}, year = {2012}, abstract = {The Volatility Framework is a collection of tools for the analysis of computer RAM. The framework offers a multitude of analysis options and is used by many investigators worldwide. Volatility currently comes with a command line interface only, which might be a hinderer for some investigators to use the tool. In this paper we present a GUI and extensions for the Volatility Framework, which on the one hand simplify the usage of the tool and on the other hand offer additional functionality like storage of results in a database, shortcuts for long Volatility Framework command sequences, and entirely new commands based on correlation of data stored in the database.}, language = {en} } @inproceedings{SchollBartellaMoluluoetal.2019, author = {Scholl, Ingrid and Bartella, Alexander K. and Moluluo, Cem and Ertural, Berat and Laing, Frederic and Suder, Sebastian}, title = {MedicVR : Acceleration and Enhancement Techniques for Direct Volume Rendering in Virtual Reality}, series = {Bildverarbeitung f{\"u}r die Medizin 2019 : Algorithmen - Systeme - Anwendungen}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2019 : Algorithmen - Systeme - Anwendungen}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-25326-4}, doi = {10.1007/978-3-658-25326-4_32}, pages = {152 -- 157}, year = {2019}, language = {en} } @inproceedings{StreunAlKaddoumParletal.2012, author = {Streun, M. and Al-Kaddoum, R. and Parl, C. and Pietrzyk, Uwe and Ziemons, Karl and Waasen, S. van}, title = {Simulation studies of optical photons in monolithic block scintillators}, series = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, booktitle = {2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4673-0120-6 (electronic ISBN)}, doi = {10.1109/NSSMIC.2011.6154621}, pages = {1380 -- 1382}, year = {2012}, abstract = {The interest in PET detectors with monolithic block scintillators is growing. In order to obtain high spatial resolutions dedicated positioning algorithms are required. But even an ideal algorithm can only deliver information which is provided by the detector. In this simulation study we investigated the light distribution on one surface of cuboid LSO scintillators of different size. Scintillators with a large aspect ratio (small footprint and large height) showed significant position information only for a minimum interaction depth of the gamma particle. The results allow a quantitative estimate for a useful aspect ratio.}, language = {en} } @inproceedings{DupratDachwaldHilchenbachetal.2013, author = {Duprat, J. and Dachwald, Bernd and Hilchenbach, M. and Engrand, Cecile and Espe, C. and Feldmann, Marco and Francke, Gero and G{\"o}r{\"o}g, Mark and L{\"u}sing, N. and Langenhorst, Falko}, title = {The MARVIN project: a micrometeorite harvester in Antarctic snow}, series = {44th Lunar and Planetary Science Conference}, booktitle = {44th Lunar and Planetary Science Conference}, year = {2013}, abstract = {MARVIN is an automated drilling and melting probe dedicated to collect pristine interplanetary dust particles (micrometeorites) from central Antarctica snow.}, language = {en} } @inproceedings{BaumannTeixeiraBouraGoettscheetal.2010, author = {Baumann, Torsten and Teixeira Boura, Cristiano Jos{\´e} and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and O'Connell, Bryan and Schmitz, Stefan and Zunft, Stefan}, title = {Air/Sand heat exchanger design and materials for solar thermal power plant applications}, series = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, booktitle = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, publisher = {Soc. OSC}, address = {Saint Maur}, pages = {146 -- 147}, year = {2010}, language = {en} } @inproceedings{DachwaldXuFeldmannetal.2011, author = {Dachwald, Bernd and Xu, Changsheng and Feldmann, Marco and Plescher, Engelbert}, title = {IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier}, series = {EGU General Assembly 2011 Vienna | Austria | 03 - 08 April 2011}, booktitle = {EGU General Assembly 2011 Vienna | Austria | 03 - 08 April 2011}, year = {2011}, abstract = {We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named "IceMole", is currently developed, built, and tested at the FH Aachen University of Applied Sciences' Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth).}, language = {en} } @inproceedings{DachwaldFeldmannEspeetal.2012, author = {Dachwald, Bernd and Feldmann, Marco and Espe, Clemens and Plescher, Engelbert and Konstantinidis, K. and Forstner, R.}, title = {Enceladus explorer - A maneuverable subsurface probe for autonomous navigation through deep ice}, series = {63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3)}, booktitle = {63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3)}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Astronautical Congress <63, 2012, Napoli>}, isbn = {978-1-62276-979-7}, pages = {1756 -- 1766}, year = {2012}, language = {en} } @inproceedings{GrundmannBauerBodenetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Boden, Ralf Christian and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, D. and Herique, A. and Ho, Tra-Mi and Jahnke, Rico and Kofman, Wlodek and Lange, Caroline and Lichtenheldt, Roy and McInnes, Colin R. and Mikschl, Tobias and Montenegro, Sergio and Moore, Iain and Pelivan, Ivanka and Peloni, Alessandro and Plettenmeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Rogez, Yves and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Toth, Norbert and Viavattene, Giulia and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Responsive exploration and asteroid characterization through integrated solar sail and lander development using small spacecraft technologies}, series = {IAA Planetary Defense Conference}, booktitle = {IAA Planetary Defense Conference}, year = {2019}, abstract = {In parallel to the evolution of the Planetary Defense Conference, the exploration of small solar system bodies has advanced from fast fly-bys on the sidelines of missions to the planets to the implementation of dedicated sample-return and in-situ analysis missions. Spacecraft of all sizes have landed, touch-and-go sampled, been gently beached, or impacted at hypervelocity on asteroid and comet surfaces. More have flown by close enough to image their surfaces in detail or sample their immediate environment, often as part of an extended or re-purposed mission. And finally, full-scale planetary defense experiment missions are in the making. Highly efficient low-thrust propulsion is increasingly applied beyond commercial use also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another development in the same years is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities. The on-going NASA OSIRIS-REx and JAXA HAYABUSA2 missions exemplify the trend as well as the upcoming NEA SCOUT mission or the landers MINERVA-II and MASCOT recently deployed on Ryugu. We outline likely as well as possible and efficient routes of continuation of all these developments towards a propellant-less and highly efficient class of spacecraft for small solar system body exploration: small spacecraft solar sails designed for carefree handling and equipped with carried landers and application modules, for all asteroid user communities -planetary science, planetary defence, and in-situ resource utilization. This projection builds on the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)² solar sail at DLR Cologne and in the 20 years since. It draws on the background of extensive trajectory optimization studies, the qualified technology of the DLR GOSSAMER-1 deployment demonstrator, and the MASCOT asteroid lander. These enable 'now-term' as well as near-term hardware solutions, and thus responsive fast-paced development. Mission types directly applicable to planetary defense include: single and Multiple NEA Rendezvous ((M)NR) for mitigation precursor, target monitoring and deflection follow-up tasks; sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation; and deployable membrane based methods to modify the asteroid's properties or interact with it. The DLR-ESTEC GOSSAMER Roadmap initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring and Solar Polar Orbiter (SPO) delivery which demonstrate the capability of near-term solar sails to achieve NEA rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. For those mission types using separable payloads, such as SPO, (M)NR and RKI, design concepts can be derived from the separable Boom Sail Deployment Units characteristic of DLR GOSSAMER solar sail technology, nanolanders like MASCOT, or microlanders like the JAXA-DLR Jupiter Trojan Asteroid Lander for the OKEANOS mission which can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. These are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms.}, language = {en} } @inproceedings{GrundmannBauerBorchersetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Borchers, Kai and Dumont, Etienne and Grimm, Christian D. and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron D. and Lange, Caroline and Maiwald, Volker and Meß, Jan-Gerd and Mikulz, Eugen and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Sasaki, Kaname and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Toth, Norbert and Ceriotti, Matteo and McInnes, Colin and Peloni, Alessandro and Biele, Jens and Krause, Christian and Dachwald, Bernd and Hercik, David and Lichtenheldt, Roy and Wolff, Friederike and Koncz, Alexander and Pelivan, Ivanka and Schmitz, Nicole and Boden, Ralf and Riemann, Johannes and Seboldt, Wolfgang and Wejmo, Elisabet and Ziach, Christian and Mikschl, Tobias and Montenegro, Sergio and Ruffer, Michael and Cordero, Federico and Tardivel, Simon}, title = {Solar sails for planetary defense \& high-energy missions}, series = {IEEE Aerospace Conference Proceedings}, booktitle = {IEEE Aerospace Conference Proceedings}, doi = {10.1109/AERO.2019.8741900}, pages = {1 -- 21}, year = {2019}, abstract = {20 years after the successful ground deployment test of a (20 m) 2 solar sail at DLR Cologne, and in the light of the upcoming U.S. NEAscout mission, we provide an overview of the progress made since in our mission and hardware design studies as well as the hardware built in the course of our solar sail technology development. We outline the most likely and most efficient routes to develop solar sails for useful missions in science and applications, based on our developed `now-term' and near-term hardware as well as the many practical and managerial lessons learned from the DLR-ESTEC Gossamer Roadmap. Mission types directly applicable to planetary defense include single and Multiple NEA Rendezvous ((M)NR) for precursor, monitoring and follow-up scenarios as well as sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation. Other mission types such as the Displaced L1 (DL1) space weather advance warning and monitoring or Solar Polar Orbiter (SPO) types demonstrate the capability of near-term solar sails to achieve asteroid rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. Some of these mission types such as SPO, (M)NR and RKI include separable payloads. For one-way access to the asteroid surface, nanolanders like MASCOT are an ideal match for solar sails in micro-spacecraft format, i.e. in launch configurations compatible with ESPA and ASAP secondary payload platforms. Larger landers similar to the JAXA-DLR study of a Jupiter Trojan asteroid lander for the OKEANOS mission can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. The high impact velocities and re-try capability achieved by the RKI mission type on a final orbit identical to the target asteroid's but retrograde to its motion enables small spacecraft size impactors to carry sufficient kinetic energy for deflection.}, language = {en} } @inproceedings{GrundmannBauerBodenetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Boden, Ralf Christian and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, D. and Herique, A. and Ho, Tra-Mi and Jahnke, Rico and Kofman, Wlodek and Lange, Caroline and Lichtenheldt, Roy and McInnes, Colin R. and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Moore, Iain and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Rogez, Yves and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Toth, Norbert and Viavattene, Giulia and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Responsive integrated small spacecraft solar sail and payload design concepts and missions}, series = {Conference: 5th International Symposium on Solar Sailing (ISSS 2019)}, booktitle = {Conference: 5th International Symposium on Solar Sailing (ISSS 2019)}, year = {2019}, abstract = {Asteroid mining has the potential to greatly reduce the cost of in-space manufacturing, production of propellant for space transportation and consumables for crewed spacecraft, compared to launching the required resources from Earth's deep gravity well. This paper discusses the top-level mission architecture and trajectory design for these resource-return missions, comparing high-thrust trajectories with continuous low-thrust solar-sail trajectories. This work focuses on maximizing the economic Net Present Value, which takes the time-cost of finance into account and therefore balances the returned resource mass and mission duration. The different propulsion methods will then be compared in terms of maximum economic return, sets of attainable target asteroids, and mission flexibility. This paper provides one more step towards making commercial asteroid mining an economically viable reality by integrating trajectory design, propulsion technology and economic modelling.}, language = {en} } @inproceedings{GrundmannBauerBodenetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Boden, Ralf and Ceriotti, Matteo and Chand, Suditi and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Heiligers, Jeannette and Herč{\´i}k, David and H{\´e}rique, Alain and Ho, Tra-Mi and Jahnke, Rico and Kofman, Wlodek and Lange, Caroline and Lichtenheldt, Roy and McInnes, Colin and Meß, Jan-Gerd and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Moore, Iain and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Rogez, Yves and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and T{\´o}th, Norbert and Vergaaij, Merel and Viavattene, Giulia and Wejmo, Elisabet and Wiedemann, Carsten and Wolff, Friederike and Ziach, Christian}, title = {Flights are ten a sail - Re-use and commonality in the design and system engineering of small spacecraft solar sail missions with modular hardware for responsive and adaptive exploration}, series = {70th International Astronautical Congress (IAC)}, booktitle = {70th International Astronautical Congress (IAC)}, isbn = {9781713814856}, pages = {1 -- 7}, year = {2019}, language = {en} } @inproceedings{JablonskiKochBronderetal.2017, author = {Jablonski, Melanie and Koch, Claudia and Bronder, Thomas and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Biosensors Modified with Tobacco Mosaic Virus Nanotubes as Enzyme Nanocarrier}, series = {MDPI Proceeding}, volume = {1}, booktitle = {MDPI Proceeding}, number = {4}, doi = {10.3390/proceedings1040505}, pages = {4}, year = {2017}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2017, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian D. and Lange, Caroline and Ulamec, Stephan and Ziach, Christian and Spr{\"o}witz, Tom and Ruffer, Michael and Seefeldt, Patric and Spietz, Peter and Toth, Norbert and Mimasu, Yuya and Rittweger, Andreas and Bibring, Jean-Pierre and Braukhane, Andy and Boden, Ralf Christian and Dumont, Etienne and Jahnke, Stephan Siegfried and Jetzschmann, Michael and Kr{\"u}ger, Hans and Lange, Michael and Gomez, Antonio Martelo and Massonett, Didier and Okada, Tatsuaki and Sagliano, Marco and Sasaki, Kaname and Schr{\"o}der, Silvio and Sippel, Martin and Skoczylas, Thomas and Wejmo, Elisabet}, title = {Small landers and separable sub-spacecraft for near-term solar sails}, series = {The Fourth International Symposium on Solar Sailing 2017}, booktitle = {The Fourth International Symposium on Solar Sailing 2017}, pages = {1 -- 10}, year = {2017}, abstract = {Following the successful PHILAE landing with ESA's ROSETTA probe and the launch of the MINERVA rovers and the Mobile Asteroid Surface Scout, MASCOT, aboard the JAXA space probe, HAYABUSA2, to asteroid (162173) Ryugu, small landers have found increasing interest. Integrated at the instrument level in their mothership they support small solar system body studies. With efficient capabilities, resource-friendly design and inherent robustness they are an attractive exploration mission element. We discuss advantages and constraints of small sub-spacecraft, focusing on emerging areas of activity such as asteroid diversity studies, planetary defence, and asteroid mining, on the background of our projects PHILAE, MASCOT, MASCOT2, the JAXA-DLR Solar Power Sail Lander Design Study, and others. The GOSSAMER-1 solar sail deployment concept also involves independent separable sub-spacecraft operating synchronized to deploy the sail. Small spacecraft require big changes in the way we do things and occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. In a Constraints-Driven Engineering environment we apply Concurrent Design and Engineering (CD/CE), Concurrent Assembly, Integration and Verification (CAIV) and Model-Based Systems Engineering (MBSE). Near-term solar sails will likely be small spacecraft which we expect to harmonize well with nano-scale separable instrument payload packages.}, language = {en} } @inproceedings{GrundmannBauerBorchersetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Borchers, Kai and Dumont, Etienne and Grimm, Christian D. and Ho, Tra-Mi and Jahnke, Rico and Lange, Caroline and Maiwald, Volker and Mikulz, Eugen and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Sasaki, Kaname and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Toth, Norbert and Wejmo, Elisabet and Biele, Jens and Krause, Christian and Cerotti, Matteo and Peloni, Alessandro and Dachwald, Bernd}, title = {Small Spacecraft Solar Sailing for Small Solar System Body Multiple Rendezvous and Landing}, series = {2018 IEEE Aerospace Conference : 3-10 March 2018}, booktitle = {2018 IEEE Aerospace Conference : 3-10 March 2018}, isbn = {978-1-5386-2014-4}, pages = {20 Seiten}, year = {2018}, language = {en} } @inproceedings{GrundmannBodenCeriottietal.2017, author = {Grundmann, Jan Thimo and Boden, Ralf and Ceriotti, Matteo and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Lange, Caroline and Lichtenheldt, Roy and Pelivan, Ivanka and Peloni, Alessandro and Riemann, Johannes and Spr{\"o}witz, Tom and Tardivel, Simon}, title = {Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization}, series = {5th IAA Planetary Defense Conference}, booktitle = {5th IAA Planetary Defense Conference}, pages = {30 Seiten}, year = {2017}, language = {en} } @inproceedings{GrundmannBorellaCeriottietal.2021, author = {Grundmann, Jan Thimo and Borella, Laura and Ceriotti, Matteo and Chand, Suditi and Cordero, Federico and Dachwald, Bernd and Fexer, Sebastian and Grimm, Christian D. and Hendrikse, Jeffrey and Herč{\´i}k, David and Herique, Alain and Hillebrandt, Martin and Ho, Tra-Mi and Kesseler, Lars and Laabs, Martin and Lange, Caroline and Lange, Michael and Lichtenheldt, Roy and McInnes, Colin R. and Moore, Iain and Peloni, Alessandro and Plettenmeier, Dirk and Quantius, Dominik and Seefeldt, Patric and Venditti, Flaviane c. F. and Vergaaij, Merel and Viavattene, Giulia and Virkki, Anne K. and Zander, Martin}, title = {More bucks for the bang: new space solutions, impact tourism and one unique science \& engineering opportunity at T-6 months and counting}, series = {7th IAA Planetary Defense Conference}, booktitle = {7th IAA Planetary Defense Conference}, year = {2021}, abstract = {For now, the Planetary Defense Conference Exercise 2021's incoming fictitious(!), asteroid, 2021 PDC, seems headed for impact on October 20th, 2021, exactly 6 months after its discovery. Today (April 26th, 2021), the impact probability is 5\%, in a steep rise from 1 in 2500 upon discovery six days ago. We all know how these things end. Or do we? Unless somebody kicked off another headline-grabbing media scare or wants to keep civil defense very idle very soon, chances are that it will hit (note: this is an exercise!). Taking stock, it is barely 6 months to impact, a steadily rising likelihood that it will actually happen, and a huge uncertainty of possible impact energies: First estimates range from 1.2 MtTNT to 13 GtTNT, and this is not even the worst-worst case: a 700 m diameter massive NiFe asteroid (covered by a thin veneer of Ryugu-black rubble to match size and brightness), would come in at 70 GtTNT. In down to Earth terms, this could be all between smashing fireworks over some remote area of the globe and a 7.5 km crater downtown somewhere. Considering the deliberate and sedate ways of development of interplanetary missions it seems we can only stand and stare until we know well enough where to tell people to pack up all that can be moved at all and save themselves. But then, it could just as well be a smaller bright rock. The best estimate is 120 m diameter from optical observation alone, by 13\% standard albedo. NASA's upcoming DART mission to binary asteroid (65803) Didymos is designed to hit such a small target, its moonlet Dimorphos. The Deep Impact mission's impactor in 2005 successfully guided itself to the brightest spot on comet 9P/Tempel 1, a relatively small feature on the 6 km nucleus. And 'space' has changed: By the end of this decade, one satellite communication network plans to have launched over 11000 satellites at a pace of 60 per launch every other week. This level of series production is comparable in numbers to the most prolific commercial airliners. Launch vehicle production has not simply increased correspondingly - they can be reused, although in a trade for performance. Optical and radio astronomy as well as planetary radar have made great strides in the past decade, and so has the design and production capability for everyday 'high-tech' products. 60 years ago, spaceflight was invented from scratch within two years, and there are recent examples of fast-paced space projects as well as a drive towards 'responsive space'. It seems it is not quite yet time to abandon all hope. We present what could be done and what is too close to call once thinking is shoved out of the box by a clear and present danger, to show where a little more preparedness or routine would come in handy - or become decisive. And if we fail, let's stand and stare safely and well instrumented anywhere on Earth together in the greatest adventure of science.}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2016, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft for small solar system body science, planetary defence and applications}, series = {IEEE Aerospace Conference 2016}, booktitle = {IEEE Aerospace Conference 2016}, pages = {1 -- 20}, year = {2016}, abstract = {Following the recent successful landings and occasional re-awakenings of PHILAE, the lander carried aboard ROSETTA to comet 67P/Churyumov-Gerasimenko, and the launch of the Mobile Asteroid Surface Scout, MASCOT, aboard the HAYABUSA2 space probe to asteroid (162173) Ryugu we present an overview of the characteristics and peculiarities of small spacecraft missions to small solar system bodies (SSSB). Their main purpose is planetary science which is transitioning from a 'pure' science of observation of the distant to one also supporting in-situ applications relevant for life on Earth. Here we focus on missions at the interface of SSSB science and planetary defence applications. We provide a brief overview of small spacecraft SSSB missions and on this background present recent missions, projects and related studies at the German Aerospace Center, DLR, that contribute to the worldwide planetary defence community. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander of ESA's ROSETTA comet rendezvous mission now on the surface of comet 67P/Churyumov-Gerasimenko, and the Mobile Asteroid Surface Scout, MASCOT, now in cruise to the ~1 km diameter C-type near-Earth asteroid (162173) Ryugu aboard the Japanese sample-return probe HAYABUSA2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA, JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Earth binary asteroid system (65803) Didymos. DLR is currently applying MASCOT heritage and lessons learned to the design of MASCOT2, a lander for the AIM mission to support a bistatic low frequency radar experiment with PHILAE/ROSETTA CONSERT heritage to explore the inner structure of Didymoon which is the designated impact target for DART.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2015, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Cordero, Frederico and Dachwald, Bernd and Koncz, Alexander and Krause, Christian and Mikschl, Tobias and Montenegro, Sergio and Quantius, Dominik and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seefeldt, Patric and T{\´o}th, Norbert and Wejmo, Elisabet}, title = {From Sail to Soil - Getting Sailcraft Out of the Harbour on a Visit to One of Earth's Nearest Neighbours}, series = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {20 S.}, year = {2015}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Herč{\´i}k, David and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron D and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and T{\´o}th, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and 'Now-Term 'technologies}, series = {69 th International Astronautical Congress (IAC)}, booktitle = {69 th International Astronautical Congress (IAC)}, pages = {1 -- 18}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, "If you've seen one asteroid, you've seen one asteroid", meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups' studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian and Herč{\´i}k, David and Herique, Alain and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron and Kofman, Wlodek and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and Toth, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Efficient massively parallel prospection for ISRU by multiple near-earth asteroid rendezvous using near-term solar sails and'now-term'small spacecraft solutions}, series = {2nd Asteroid Science Intersections with In-Space Mine Engineering - ASIME 2018}, booktitle = {2nd Asteroid Science Intersections with In-Space Mine Engineering - ASIME 2018}, pages = {1 -- 33}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is key for in-situ resource utilization (ISRU). The design of mining missions requires good understanding of SSSB properties, including composition, surface and interior structure, and thermal environment. But as the saying goes "If you've seen one asteroid, you've seen one Asteroid": Although some patterns may begin to appear, a stable and reliable scheme of SSSB classification still has to be evolved. Identified commonalities would enable generic ISRU technology and spacecraft design approaches with a high degree of re-use. Strategic approaches require much broader in-depth characterization of the SSSB populations of interest to the ISRU community. The DLR-ESTEC GOSSAMER Roadmap Science Working Groups identified target-flexible Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the missions only feasible with solar sail propulsion, showed the ability to access any inclination and a wide range of heliocentric distances as well as continuous operation close to Earth's orbit where low delta-v objects reside.}, language = {en} } @inproceedings{GrundmannLangeDachwaldetal.2015, author = {Grundmann, Jan Thimo and Lange, Caroline and Dachwald, Bernd and Grimm, Christian and Koch, Aaron and Ulamec, Stephan}, title = {Small Spacecraft in Planetary Defence Related Applications-Capabilities, Constraints, Challenges}, series = {IEEE Aerospace Conference}, booktitle = {IEEE Aerospace Conference}, pages = {1 -- 18}, year = {2015}, abstract = {In this paper we present an overview of the characteristics and peculiarities of small spacecraft missions related to planetary defence applications. We provide a brief overview of small spacecraft missions to small solar system bodies. On this background we present recent missions and selected projects and related studies at the German Aerospace Center, DLR, that contribute to planetary defence related activities. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander recently arrived on comet 67P/Churyumov-Gerasimenko aboard ESA's ROSETTA comet rendezvous mission, and the Mobile Asteroid Surface Scout, MASCOT, now underway to near-Earth asteroid (162173) 1999 JU3 aboard the Japanese sample-return probe HAYABUSA-2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA,JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Eath binary asteroid (65803) Didymos.}, language = {en} } @inproceedings{HuckPoghossianBaeckeretal.2013, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Zander, W. and Schubert, J. and Sukoyan, L. H. and Begoyan, Vardges K. and Buniatyan, V. V. and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Chemische Sensoren mit Bariumstrontiumtitanat als funktionelle Schicht zur Multiparameterdetektion}, series = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, booktitle = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, organization = {Dresdner Sensor-Symposium <11, 2013>}, isbn = {978-3-9813484-5-3}, pages = {368 -- 372}, year = {2013}, language = {de} } @inproceedings{GrundmannMessBieleetal.2017, author = {Grundmann, Jan Thimo and Meß, Jan-Gerd and Biele, Jens and Seefeldt, Patric and Dachwald, Bernd and Spietz, Peter and Grimm, Christian D. and Spr{\"o}witz, Tom and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft in small solar system body applications}, series = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, booktitle = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, organization = {IEEE Aerospace Conference}, isbn = {978-1-5090-1613-6}, doi = {10.1109/AERO.2017.7943626}, pages = {1 -- 20}, year = {2017}, language = {en} } @inproceedings{BaeckerKochGeigeretal.2016, author = {B{\"a}cker, Matthias and Koch, Claudia and Geiger, Fania and Eber, Fabian and Gliemann, Hartmut and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {A New Class of Biosensors Based on Tobacco Mosaic Virus and Coat Proteins as Enzyme Nanocarrier}, series = {Procedia Engineering}, volume = {Vol. 168}, booktitle = {Procedia Engineering}, issn = {1877-7058}, doi = {10.1016/j.proeng.2016.11.228}, pages = {618 -- 621}, year = {2016}, language = {en} } @inproceedings{SeefeldtBauerDachwaldetal.2015, author = {Seefeldt, Patric and Bauer, Waldemar and Dachwald, Bernd and Grundmann, Jan Thimo and Straubel, Marco and Sznajder, Maciej and T{\´o}th, Norbert and Zander, Martin E.}, title = {Large lightweight deployable structures for planetary defence: solar sail propulsion, solar concentrator payloads, large-scale photovoltaic power}, series = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {24}, year = {2015}, language = {en} } @inproceedings{LettiniHavermannGuidettietal.2010, author = {Lettini, Antonio and Havermann, Marc and Guidetti, Marco and Fornaciari, Andrea}, title = {Improved functionalities and energy saving potential on mobile machines combining electronics with flow sharing valve and variable displacement pump}, series = {7th International Fluid Power Conference - Vol. 3 - Aachen Efficiency through Fluid Power Workshop Proceedings}, booktitle = {7th International Fluid Power Conference - Vol. 3 - Aachen Efficiency through Fluid Power Workshop Proceedings}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-940565-92-1}, pages = {103 -- 114}, year = {2010}, language = {en} } @inproceedings{ReckerBosschaertsWagemakersetal.2010, author = {Recker, Elmar and Bosschaerts, Walter and Wagemakers, Rolf and Hendrick, Patrick and Funke, Harald and B{\"o}rner, Sebastian}, title = {Experimental study of a round jet in cross-flow at low momentum ratio}, pages = {13 Seiten}, year = {2010}, abstract = {With the final objective of optimizing the "Micromix" hydrogen combustion principle, a round jet in a laminar cross-flow prior to its combustion is investigated experimentally using Stereoscopic Particle Image Velocimetry. Measurements are performed at a jet to cross-stream momentum ratio of 1 and a Reynolds number, based on the jet diameter and jet velocity, of 1600. The suitability to combine side, top and end views is analyzed statistically. The statistical theory of testing hypotheses, pertaining to the joint distribution of the averaged velocity along intersecting observation planes, is employed. Overall, the averaged velocity fields of the varying observation planes feature homogeneity at a 0.05 significance level. Minor discrepancies are related to the given experimental conditions. By use of image maps, averaged and instantaneous velocity fields, an attempt is made to elucidate the flow physics and a kinematically consistent vortex model is proposed. In the time-averaged flow field, the principal vortical systems were identified and the associated mixing visualized. The jet trajectory and physical dimensions scale with the momentum ratio times the jet diameter. The jet/cross-flow mixture converging upon the span-wise centre-line, the lifting action of the Counter Rotating Vortex Pair and the reversed flow region contribute to the high entrainment and mixedness. It is shown that the jet width is larger on the downstream side as compared to the upstream side of the centre-streamline. The deepest penetration of the particles on the outer boundary occurs in the centre-plane. Meanwhile, with increasing off-centre position, the boundaries all lay further from the centre-line position than does the boundary in the centre-plane, corresponding to a kidney-like shape of the flow cross-section. The generation of the Counter Rotating Vortex Pair and the instability mechanism is documented by instantaneous image maps and vector fields. The necessary circulation for the Counter Rotating Vortex Pair originates from a combined effect of steady in-hole, hanging and wake vortices. The strong cross-flow and jet interaction induces a three-dimensional waving, the stream-wise Counter Rotating Vortex Pair pair, leading to the formation of Ring Like Vortices. A secondary Counter Rotating Vortex Pair forms on top of the primary Counter Rotating Vortex Pair, resulting in mixing by "puffs". Overall, Stereoscopic Particle Image Velocimetry proofed capable of elucidating the Jet in Cross-Flow complex flow field. The gained insight in the mixing process will definitely contribute to the "Micromix" hydrogen combustion optimization.}, language = {en} } @inproceedings{FunkeRobinsonHendricketal.2010, author = {Funke, Harald and Robinson, A. E. and Hendrick, P. and Wagemakers, R.}, title = {Design and Testing of a Micromix Combustor With Recuperative Wall Cooling for a Hydrogen Fuelled µ-Scale Gas Turbine}, series = {Conference Proceedings ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 5: Industrial and Cogeneration; Microturbines and Small Turbomachinery; Oil and Gas Applications; Wind Turbine Technology}, booktitle = {Conference Proceedings ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 5: Industrial and Cogeneration; Microturbines and Small Turbomachinery; Oil and Gas Applications; Wind Turbine Technology}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4400-7}, doi = {10.1115/GT2010-23453}, pages = {587 -- 596}, year = {2010}, abstract = {For more than a decade up to now there is an ongoing interest in small gas turbines downsized to micro-scale. With their high energy density they offer a great potential as a substitute for today's unwieldy accumulators, found in a variety of applications like laptops, small tools etc. But micro-scale gas turbines could not only be used for generating electricity, they could also produce thrust for powering small unmanned aerial vehicles (UAVs) or similar devices. Beneath all the great design challenges with the rotating parts of the turbomachinery at this small scale, another crucial item is in fact the combustion chamber needed for a safe and reliable operation. With the so called regular micromix burning principle for hydrogen successfully downscaled in an initial combustion chamber prototype of 10 kW energy output, this paper describes a new design attempt aimed at the integration possibilities in a μ-scale gas turbine. For manufacturing the combustion chamber completely out of stainless steel components, a recuperative wall cooling was introduced to keep the temperatures in an acceptable range. Also a new way of an integrated ignition was developed. The detailed description of the prototype's design is followed by an in depth report about the test results. The experimental investigations comprise a set of mass flow variations, coupled with a variation of the equivalence ratio for each mass flow at different inlet temperatures and pressures. With the data obtained by an exhaust gas analysis, a full characterisation concerning combustion efficiency and stability of the prototype chamber is possible. Furthermore the data show a full compliance with the expected operating requirements of the designated μ-scale gas turbine.}, language = {en} } @inproceedings{Ferrein2010, author = {Ferrein, Alexander}, title = {golog.lua: Towards a non-prolog implementation of Golog for embedded systems}, series = {Dagstuhl Seminar Proceedings, Volume 10081}, booktitle = {Dagstuhl Seminar Proceedings, Volume 10081}, doi = {10.4230/DagSemProc.10081.9}, pages = {1 -- 15}, year = {2010}, abstract = {Among many approaches to address the high-level decision making problem for autonomous robots and agents, the robot program¬ming and plan language Golog follows a logic-based deliberative approach, and its successors were successfully deployed in a number of robotics applications over the past ten years. Usually, Golog interpreter are implemented in Prolog, which is not available for our target plat¬form, the bi-ped robot platform Nao. In this paper we sketch our first approach towards a prototype implementation of a Golog interpreter in the scripting language Lua. With the example of the elevator domain we discuss how the basic action theory is specified and how we implemented fluent regression in Lua. One possible advantage of the availability of a Non-Prolog implementation of Golog could be that Golog becomes avail¬able on a larger number of platforms, and also becomes more attractive for roboticists outside the Cognitive Robotics community.}, language = {en} } @inproceedings{FunkeBoernerRobinsonetal.2010, author = {Funke, Harald and B{\"o}rner, Sebastian and Robinson, A. and Hendrick, P. and Recker, E.}, title = {Low NOx H2 combustion for industrial gas turbines of various power ranges}, year = {2010}, language = {en} } @inproceedings{HillgaertnerKappel2006, author = {Hillg{\"a}rtner, Michael and Kappel, U.}, title = {Radiating Impedance of Mains Cabling During Emissions Testing}, series = {Proceedings of EMC Europe 2006 Barcelona : International Symposium on Electromagnetic Compatibility}, booktitle = {Proceedings of EMC Europe 2006 Barcelona : International Symposium on Electromagnetic Compatibility}, address = {Barcelona}, isbn = {84-689-9439-1}, pages = {17 -- 22}, year = {2006}, language = {en} } @inproceedings{NiemuellerFerreinBecketal.2010, author = {Niem{\"u}ller, Tim and Ferrein, Alexander and Beck, Daniel and Lakemeyer, Gerhard}, title = {Design principles of the component-based robot software framework Fawkes}, series = {Simulation, Modeling, and Programming for Autonomous Robots}, booktitle = {Simulation, Modeling, and Programming for Autonomous Robots}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-642-17319-6_29}, pages = {300 -- 311}, year = {2010}, abstract = {The idea of component-based software engineering was proposed more that 40 years ago, yet only few robotics software frameworks follow these ideas. The main problem with robotics software usually is that it runs on a particular platform and transferring source code to another platform is crucial. In this paper, we present our software framework Fawkes which follows the component-based software design paradigm by featuring a clear component concept with well-defined communication interfaces. We deployed Fawkes on several different robot platforms ranging from service robots to biped soccer robots. Following the component concept with clearly defined communication interfaces shows great benefit when porting robot software from one robot to the other. Fawkes comes with a number of useful plugins for tasks like timing, logging, data visualization, software configuration, and even high-level decision making. These make it particularly easy to create and to debug productive code, shortening the typical development cycle for robot software.}, language = {en} } @inproceedings{NiemuellerFerreinLakemeyer2010, author = {Niem{\"u}ller, Tim and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {A Lua-based behavior engine for controlling the humanoid robot Nao}, series = {RoboCup 2009: Robot Soccer World Cup XIII}, booktitle = {RoboCup 2009: Robot Soccer World Cup XIII}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-642-11876-0_21}, pages = {240 -- 251}, year = {2010}, abstract = {The high-level decision making process of an autonomous robot can be seen as an hierarchically organised entity, where strategical decisions are made on the topmost layer, while the bottom layer serves as driver for the hardware. In between is a layer with monitoring and reporting functionality. In this paper we propose a behaviour engine for this middle layer which, based on formalism of hybrid state machines (HSMs), bridges the gap between high-level strategic decision making and low-level actuator control. The behaviour engine has to execute and monitor behaviours and reports status information back to the higher level. To be able to call the behaviours or skills hierarchically, we extend the model of HSMs with dependencies and sub-skills. These Skill-HSMs are implemented in the lightweight but expressive Lua scripting language which is well-suited to implement the behaviour engine on our target platform, the humanoid robot Nao.}, language = {en} } @inproceedings{FerreinSteinbauer2010, author = {Ferrein, Alexander and Steinbauer, Gerald}, title = {On the Way to High-Level Programming for Resource-Limited Embedded Systems with Golog}, series = {Simulation, Modeling, and Programming for Autonomous Robots}, booktitle = {Simulation, Modeling, and Programming for Autonomous Robots}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-642-17319-6_23}, pages = {229 -- 240}, year = {2010}, abstract = {In order to allow an autonomous robot to perform non-trivial tasks like to explore a foreign planet the robot has to have deliberative capabilities like reasoning or planning. Logic-based approaches like the programming and planing language Golog and it successors has been successfully used for such decision-making problems. A drawback of this particular programing language is that their interpreter usually are written in Prolog and run on a Prolog back-end. Such back-ends are usually not available or feasible on resource-limited robot systems. In this paper we present our ideas and first results of a re-implementation of the interpreter based on the Lua scripting language which is available on a wide range of systems including small embedded systems.}, language = {en} } @inproceedings{RensVarzinczakMeyeretal.2010, author = {Rens, Gavin and Varzinczak, Ivan and Meyer, Thomas and Ferrein, Alexander}, title = {A Logic for Reasoning about Actions and Explicit Observations}, series = {AI 2010: Advances in Artificial Intelligence}, booktitle = {AI 2010: Advances in Artificial Intelligence}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-642-17432-2_40}, pages = {395 -- 404}, year = {2010}, abstract = {We propose a formalism for reasoning about actions based on multi-modal logic which allows for expressing observations as first-class objects. We introduce a new modal operator, namely [o |α], which allows us to capture the notion of perceiving an observation given that an action has taken place. Formulae of the type [o |α]ϕ mean 'after perceiving observation o, given α was performed, necessarily ϕ'. In this paper, we focus on the challenges concerning sensing with explicit observations, and acting with nondeterministic effects. We present the syntax and semantics, and a correct and decidable tableau calculus for the logic}, language = {en} } @inproceedings{GeimerSauerbornHoffschmidtetal.2010, author = {Geimer, Konstantin and Sauerborn, Markus and Hoffschmidt, Bernhard and Schmitz, Mark and G{\"o}ttsche, Joachim}, title = {Test facility for absorber specimens of solar tower power plants}, series = {Advances in Science and Technology}, volume = {74}, booktitle = {Advances in Science and Technology}, publisher = {Trans Tech Publications}, address = {Baech}, doi = {10.4028/www.scientific.net/AST.74.266}, pages = {266 -- 271}, year = {2010}, abstract = {The Solar-Institute J{\"u}lich (SIJ) has initiated the construction of the first and only German solar tower power plant and is now involved in the accompanying research. The power plant for experimental and demonstration purposes in the town of J{\"u}lich started supplying electric energy in the beginning of 2008. The central receiver plant features as central innovation an open volumetric receiver, consisting of porous ceramic elements that simultaneously absorb the concentrated sunlight and transfer the heat to ambient air passing through the pores so that an average temperature of 680°C is reached. The subsequent steam cycle generates up to 1.5 MWe. A main field of research at the SIJ is the optimization of the absorber structures. To analyze the capability of new absorber specimens a special test facility was developed and set up in the laboratory. A high-performance near-infrared radiator offers for single test samples a variable and repeatable beam with a power of up to 320 kW/m² peak. The temperatures achieved on the absorber surface can reach more than 1000°C. To suck ambient air through the open absorber - like on the tower - it is mounted on a special blower system. An overview about the test facility and some recent results will be presented.}, language = {en} } @inproceedings{GerhardsBelloumBerretzetal.2010, author = {Gerhards, Michael and Belloum, Adam and Berretz, Frank and Sander, Volker and Skorupa, Sascha}, title = {A history-tracing XML-based provenance framework for workflows}, series = {The 5th Workshop on Workflows in Support of Large-Scale Science}, booktitle = {The 5th Workshop on Workflows in Support of Large-Scale Science}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4244-8989-3}, doi = {10.1109/WORKS.2010.5671873}, pages = {10 Seiten}, year = {2010}, abstract = {The importance of validating and reproducing the outcome of computational processes is fundamental to many application domains. Assuring the provenance of workflows will likely become even more important with respect to the incorporation of human tasks to standard workflows by emerging standards such as WS-HumanTask. This paper addresses this trend by an actor-based workflow approach that actively support provenance. It proposes a framework to track and store provenance information automatically that applies for various workflow management systems. In particular, the introduced provenance framework supports the documentation of workflows in a legally binding way. The authors therefore use the concept of layered XML documents, i.e. history-tracing XML. Furthermore, the proposed provenance framework enables the executors (actors) of a particular workflow task to attest their operations and the associated results by integrating digital XML signatures.}, language = {en} } @inproceedings{BouquegneauKernRousseau2010, author = {Bouquegneau, Christian and Kern, Alexander and Rousseau, Alain}, title = {Lightning safety guidelines}, pages = {6 Seiten}, year = {2010}, abstract = {This paper introduces lightning to the layman, noting the right behaviour in front of thunderstorms as well as protective measures against lightning. It also contributes to the prevention of lightning injuries and damages. This report was prepared by the authors inside the AHG1 Group for IEC TC81 (Lightning Protection).}, language = {en} } @inproceedings{BoernerFunkeHendricketal.2010, author = {B{\"o}rner, Sebastian and Funke, Harald and Hendrick, P. and Recker, E.}, title = {Control system modifications for a hydrogen fuelled gas-turbine}, series = {Proceedings of ISROMAC 13}, booktitle = {Proceedings of ISROMAC 13}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-617-38848-4}, pages = {665 -- 670}, year = {2010}, language = {en} } @inproceedings{KernFrentzelBehrens2010, author = {Kern, Alexander and Frentzel, Ralf and Behrens, J{\"o}rg}, title = {Simulation of the transient voltages in the auxiliary power network of a large power plant in case of a direct lightning strike to the high-voltage overhead transmission line}, publisher = {IEEE}, address = {New York}, isbn = {978-88-905519-0-1}, doi = {10.1109/ICLP.2010.7845756}, pages = {749-1 -- 749-7}, year = {2010}, abstract = {Large power plants can be endangered by lightning strikes with possible consequences regarding their safety and availability. A special scenario is a lightning strike to the HV overhead transmission line close to the power plant's connection to the power grid. If then additionally a so-called shielding failure of the overhead ground wire on top of the overhead transmission line is assumed, i.e. the lightning strikes directly into a phase conductor, this is an extreme electromagnetic disturbance. The paper deals with the numerical simulation of such a lightning strike and the consequences on the components of the power plant's auxiliary power network connected to different voltage levels.}, language = {en} } @inproceedings{KernSchelthoffMathieu2010, author = {Kern, Alexander and Schelthoff, Christof and Mathieu, Moritz}, title = {Probability of lightning strikes to air-terminations of structures using the electro-geometrical model theory and the statistics of lightning current parameters}, publisher = {IEEE}, address = {New York}, isbn = {978-88-905519-0-1}, doi = {10.1109/ICLP.2010.7845757}, pages = {750-1 -- 750-8}, year = {2010}, abstract = {Planning the air-terminations for a structure to be protected the use of the rolling-sphere method (electro-geometrical model) is the best way from the physics of lightning point-of-view. Therefore, international standards prefer this method. However, using the rolling-sphere method only results in possible point-of-strikes on a structure without giving information about the probability of strikes at the individual points compared to others.}, language = {en} } @inproceedings{BerretzSkorupaSanderetal.2010, author = {Berretz, Frank and Skorupa, Sascha and Sander, Volker and Belloum, Adam}, title = {Towards an actor-driven workflow management system for grids}, series = {Proceedings of 2010 International Symposium on Collaborative Technologies and Systems}, booktitle = {Proceedings of 2010 International Symposium on Collaborative Technologies and Systems}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-1-4244-6619-1}, doi = {10.1109/CTS.2010.5478458}, pages = {611 -- 616}, year = {2010}, abstract = {Currently, most workflow management systems in Grid environments provide push-oriented job distribution strategies, where jobs are explicitly delegated to resources. In those scenarios the dedicated resources execute submitted jobs according to the request of a workflow engine or Grid wide scheduler. This approach has various limitations, particularly if human interactions should be integrated in workflow execution. To support human interactions with the benefit of enabling inter organizational computation and community approaches, this poster paper proposes the idea of a pull-based task distribution strategy. Here, heterogeneous resources, including human interaction, should actively select tasks for execution from a central repository. This leads to special demands regarding security issues like access control. In the established push-based job execution the resources are responsible for granting access to workflows and job initiators. In general this is done by access control lists, where users are explicitly mapped to local accounts according to their policies. In the pull-based approach the resources actively apply for job executions by sending requests to a central task repository. This means that every resource has to be able to authenticate against the repository to be authorized for task execution. In other words the authorization is relocated from the resources to the repository. The poster paper introduces current work regarding to the mentioned security aspects in the pull-based approach within the scope of the project "HiX4AGWS".}, language = {en} } @inproceedings{KirchnerSpelthahnSchoeningetal.2010, author = {Kirchner, Patrick and Spelthahn, Heiko and Sch{\"o}ning, Michael Josef and Henkel, Hartmut and Schneider, Andreas and Friedrich, Peter and Kolstad, Jens and Berger, J{\"o}rg}, title = {Realisierung eines Polyimid-basierten kalorimetrischen Gassensors zur Inline-{\"U}berwachung der H2O2-Konzentration in aseptischen Abf{\"u}llsystemen}, series = {Tagungsband: Sensoren und Messsysteme 2010}, booktitle = {Tagungsband: Sensoren und Messsysteme 2010}, publisher = {VDE Verlag}, address = {Berlin}, isbn = {978-3-8007-3260-9}, pages = {607 -- 612}, year = {2010}, abstract = {In aseptischen Abf{\"u}llsystemen wird Wasserstoffperoxid in der Gasphase aufgrund der stark oxidativen Wirkung zur Packstoffentkeimung eingesetzt. Dabei wird die Effizienz der Entkeimung im Wesentlichen von der vorliegenden H2O2-Konzentration im Packstoff bestimmt. Zur Inline-{\"U}berwachung der H2O2-Konzentration wurde ein kalorimetrischer Gassensor auf Basis einer flexiblen Polyimidfolie aus temperatursensitiven D{\"u}nnschicht-Widerst{\"a}nden und Mangan(IV)-oxid als katalytische Transducerschicht realisiert. Der Sensor weist ein lineares Ansprechverhalten mit einer Sensitivit{\"a}t von 7,15 °C/Vol.-\% in einem H2O2-Konzentrationsbereich von 0 bis 8 Vol.-\% auf. Weiterhin wurde zur Auslesung des Sensorsignals eine RFID-Elektronik, bestehend aus einem Sensor-Tag und einer Sende-/Empfangseinheit ausgelegt, sowie eine Abfolge des Messzyklus aufgestellt. Im weiteren Verlauf soll der kalorimetrische Gassensor mit der RFID-Elektronik gekoppelt und in eine Testverpackung zur Inline-{\"U}berwachung der H2O2-Konzentration in aseptischen Abf{\"u}llsystemen implementiert werden.}, language = {de} } @inproceedings{WernerSpelthahnSchoeningetal.2010, author = {Werner, Frederik and Spelthahn, Heiko and Sch{\"o}ning, Michael Josef and Krumbe, Christoph and Wagner, Torsten and Yoshinobu, Tatsuo and Keusgen, Michael}, title = {Neue Ansteuerungselektronik f{\"u}r LAPS-basierte Biosensoren zur gleichzeitig ortsaufgel{\"o}sten Messung der pH-Konzentration}, series = {Tagungsband: Sensoren und Messsysteme 2010}, booktitle = {Tagungsband: Sensoren und Messsysteme 2010}, publisher = {VDE Verlag}, address = {Berlin}, isbn = {978-3-8007-3260-9}, pages = {109 -- 114}, year = {2010}, abstract = {Ein lichtadressierbarer potentiometrischer Sensor (LAPS) kann die Konzentration eines oder mehrerer Analyten ortsaufgel{\"o}st auf der Sensoroberfl{\"a}che nachweisen. Dazu wird mit einer modulierten Lichtquelle die Halbleiterstruktur des zu untersuchenden Bereiches angeregt und ein entsprechender Photostrom ausgelesen. Durch gleichzeitige Anregung mehrere Bereiche durch Lichtquellen mit unterschiedlichen Modulationsfrequenzen k{\"o}nnen diese auch zeitgleich ausgelesen werden. Mit der neuen, hier vorgestellten Ansteuerungselektronik integriert in einem "Field Programmable Gate Array" (FPGA) ist es m{\"o}glich, mehrere Leuchtquellen gleichzeitig mit unterschiedlichen, w{\"a}hrend der Laufzeit festlegbaren Frequenzen, Phasen und Lichtintensit{\"a}ten zu betreiben. Somit kann das Frequenzverhalten des Sensors untersucht und die Konzentration des Analyten {\"u}ber das Oberfl{\"a}chenpotential mit Hilfe von Strom/Spannungs-Kurven und Phase/Spannungs-Kurven bestimmt werden.}, language = {de} } @inproceedings{PoghossianWagnerSchoening2010, author = {Poghossian, Arshak and Wagner, Holger and Sch{\"o}ning, Michael Josef}, title = {Automatisiertes „wafer level"-Testsystem zur Charakterisierung von siliziumbasierten Chemo- und Biosensoren}, series = {Tagungsband: Sensoren und Messsysteme 2010}, booktitle = {Tagungsband: Sensoren und Messsysteme 2010}, publisher = {VDE Verlag}, address = {Berlin}, isbn = {978-3-8007-3260-9}, pages = {89 -- 92}, year = {2010}, abstract = {Es wurde ein automatisiertes, computerunterst{\"u}tztes Testsystem f{\"u}r die Funktionspr{\"u}fung und Charakterisierung von (bio-)chemischen Sensoren auf Waferebene entwickelt und in einen konventionellen Spitzenmessplatz integriert. Das System erm{\"o}glicht die Charakterisierung und Identifizierung „funktionstauglicher" Sensoren bereits auf Waferebene zwischen den einzelnen Herstellungsschritten, wodurch weitere, bisher {\"u}bliche Verarbeitungsschritte wie das Fixieren, Bonden und Verkapseln f{\"u}r die defekten oder nicht funktionstauglichen Sensorstrukturen entf{\"a}llt. Außerdem bietet eine speziell entworfene miniaturisierte Durchflussmesszelle die M{\"o}glichkeit, bereits auf Waferlevel die Sensitivit{\"a}t, Drift, Hysterese und Ansprechzeit der (bio-)chemischen Sensoren zu charakterisieren. Das System wurde exemplarisch mit kapazitiven, pH-sensitiven EIS- (Elektrolyt-Isolator-Silizium) Strukturen und ISFET- (ionensensitiver Feldeffekttransistor) Strukturen mit verschiedenen Geometrien und Gate-Layouts getestet.}, language = {de} }