@article{Laack2014, author = {Laack, Walter van}, title = {Therefore Fermat is right}, series = {American journal of humanities and social sciences : AJHSS}, volume = {2}, journal = {American journal of humanities and social sciences : AJHSS}, number = {2}, issn = {2329-079X (E-Journal); 2329-0781 (Print)}, pages = {117 -- 120}, year = {2014}, abstract = {It was Fernat's idea to investigate how many numbers would fulfill the equation according to the Pythagorean Theorem if the exponent were increased to random, e.g. to a3 + b3 = c3. His question became therefore: are there two whole numbers the cubes of which add up to the volume of the cube of a third whole number? He posed this same question, of course, for all kinds of higher exponents, so that the equation could be generalized: is there an integral solution for the equation an + bn = cn, if the exponent n is higher than 2? Although in 1993, the English mathematician Andrew Wiles was able to produce an arithmetical proof for Fermat's famous theorem, I will show that there is a simple logical explanation which is also pragmatic and plausible and what is the result of a fundamental alternative idea how our world seems to be constructed.}, language = {en} } @article{Stulpe2019, author = {Stulpe, Werner}, title = {Aspects of the Quantum-Classical Connection Based on Statistical Maps}, series = {Foundations of Physics}, volume = {49}, journal = {Foundations of Physics}, number = {6}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/s10701-019-00269-9}, pages = {677 -- 692}, year = {2019}, language = {en} } @article{Stulpe2009, author = {Stulpe, Werner}, title = {Operator}, series = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, journal = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-70622-9}, pages = {440 -- 444}, year = {2009}, language = {en} } @article{StulpeBuschHellwig1993, author = {Stulpe, Werner and Busch, P. and Hellwig, K.-E.}, title = {Classical Representations of Finite-Dimensional Quantum Mechanics. Busch, P.; Hellwig, K.-E.; Stulpe, W.}, series = {International Journal of Theoretical Physics. 32 (1993), H. 3}, journal = {International Journal of Theoretical Physics. 32 (1993), H. 3}, isbn = {1572-9575}, pages = {399 -- 405}, year = {1993}, language = {en} } @article{PoghossianKraemerAbouzaretal.2009, author = {Poghossian, Arshak and Kr{\"a}mer, Melina and Abouzar, Maryam H. and Pita, Marcos and Katz, Evgeny and Sch{\"o}ning, Michael Josef}, title = {Interfacing of biocomputing systems with silicon chips: Enzyme logic gates based on field-effect devices}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1876-6196}, pages = {682 -- 685}, year = {2009}, language = {en} } @incollection{SchoeningPoghossianGluecketal.2014, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Gl{\"u}ck, Olaf and Thust, Marion}, title = {Electrochemical composition measurement}, series = {Measurement, instrumentation, and sensors handbook: electromagnetic, optical, radiation, chemical, and biomedical measuremen}, booktitle = {Measurement, instrumentation, and sensors handbook: electromagnetic, optical, radiation, chemical, and biomedical measuremen}, edition = {2nd ed.}, publisher = {CRC Pr.}, address = {Boca Raton, Fa.}, isbn = {978-1-4398-4891-3}, pages = {55-1 -- 55-54}, year = {2014}, language = {en} } @article{PoghossianGeisslerSchoening2019, author = {Poghossian, Arshak and Geissler, Hanno and Sch{\"o}ning, Michael Josef}, title = {Rapid methods and sensors for milk quality monitoring and spoilage detection}, series = {Biosensors and Bioelectronics}, volume = {140}, journal = {Biosensors and Bioelectronics}, number = {Article 111272}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.04.040}, year = {2019}, language = {en} } @article{Laack2014, author = {Laack, Walter van}, title = {Nature is much smarter than expected: the Genetic Code is not degenerate}, series = {American journal of humanities and social sciences}, volume = {Vol. 2}, journal = {American journal of humanities and social sciences}, number = {No. 1}, issn = {2329-0781 (Print) ; 2329-079X (Online)}, pages = {10 -- 12}, year = {2014}, abstract = {In any books about genetics it can still today be read that our genetic code is called "degenerate" because it is still believed that 43 = 64 triplets encode the 20 essential amino acids. Indeed we have to assume the inverse law, what means that 34 = 81 exact code positions are really effective for our genetic code and encode the amino acids, compiled to proteins. This very important discovery leads to two completely new results that are limits-overlooking: 1) 34 (=81) genetic code positions mean exactly the same number as there are stable and naturally existing chemical elements in our universe. This famous argument should now lead to some alternative, as well as new fundamental conclusions about our existence. 2) A genetic code positioning system shows that nature is much smarter than expected: mutations are made less dangerous than believed, because they won't be that easily able any more to cause severe damages in the protein-synthesis. This should also lead to some alternative views upon evolution of life.}, language = {en} } @article{VoegeleRuebbelkeGovorukhaetal.2019, author = {V{\"o}gele, Stefan and R{\"u}bbelke, Dirk and Govorukha, Kristina and Grajewski, Matthias}, title = {Socio-technical scenarios for energy-intensive industries: the future of steel production in Germany}, series = {Climatic Change}, journal = {Climatic Change}, publisher = {Springer}, address = {Berlin}, issn = {0165-0009}, doi = {10.1007/s10584-019-02366-0}, pages = {1 -- 16}, year = {2019}, language = {en} } @article{PoghossianWagnerSchoening2009, author = {Poghossian, Arshak and Wagner, Holger and Sch{\"o}ning, Michael Josef}, title = {Functional testing and characterisation of (bio-)chemical sensors on wafer level}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, isbn = {1876-6196}, pages = {835 -- 838}, year = {2009}, language = {en} } @article{AbouzarPoghossianSiqueiraetal.2010, author = {Abouzar, Maryam H. and Poghossian, Arshak and Siqueira, Jos{\´e} R. Jr. and Oliveira, Osvaldo N. Jr. and Moritz, Werner and Sch{\"o}ning, Michael Josef}, title = {Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {884 -- 890}, year = {2010}, language = {en} } @article{PoghossianIngebrandtOffenhaeusseretal.2009, author = {Poghossian, Arshak and Ingebrandt, S. and Offenh{\"a}usser, A. and Sch{\"o}ning, Michael Josef}, title = {Field-effect devices for detecting cellular signals}, series = {Seminars in Cell \& Developmental Biology. 20 (2009), H. 1}, journal = {Seminars in Cell \& Developmental Biology. 20 (2009), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1096-3634}, pages = {41 -- 48}, year = {2009}, language = {en} } @article{TranStaat2010, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Shakedown analysis of two dimensional structures by an edge-based smoothed finite element method}, pages = {1 -- 7}, year = {2010}, language = {en} } @article{DigelTemizArtmann2011, author = {Digel, Ilya and Temiz Artmann, Ayseg{\"u}l}, title = {The emperor's new body : seeking for a blueprint of limb regeneration in humans}, series = {Stem cell engineering : principles and applications / Gerhard M. Artmann ... eds.}, journal = {Stem cell engineering : principles and applications / Gerhard M. Artmann ... eds.}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-642-11864-7}, pages = {3 -- 37}, year = {2011}, language = {en} } @article{LeschingerBeschAydinetal.2019, author = {Leschinger, Tim and Besch, Katharina and Aydin, Cansu and Staat, Manfred and Scaal, Martin and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {Irreparable rotator cuff tears: a biomechanical comparison of superior capsuloligamentous complex reconstruction techniques and an interposition graft technique}, series = {The Orthopaedic Journal of Sports Medicine}, volume = {7}, journal = {The Orthopaedic Journal of Sports Medicine}, number = {8}, doi = {10.1177/2325967119864590}, pages = {1 -- 5}, year = {2019}, language = {en} } @phdthesis{Tran2019, author = {Tran, Ngoc Trinh}, title = {Limit and Shakedown analysis of structures under stochastic conditions}, publisher = {Technische Universit{\"a}t Braunschweig}, address = {Braunschweig}, doi = {10.24355/dbbs.084-201902121135-0}, pages = {166 S.}, year = {2019}, language = {en} } @article{SiqueiraBaeckerPoghossianetal.2010, author = {Siqueira, Jos{\´e} R. Jr. and B{\"a}cker, Matthias and Poghossian, Arshak and Zucolotto, Valtencir and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field-effect devices}, series = {Physica status solidi (a). 207 (2010), H. 4}, journal = {Physica status solidi (a). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {781 -- 786}, year = {2010}, language = {en} } @inproceedings{BuniatyanHuckPoghossianetal.2014, author = {Buniatyan, V. V. and Huck, Christina and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Rustamyan, L. G. and Hovnikyan, H. H.}, title = {Equivalent circuit and optimization of impedance characteristics of an electrolyte conductivity sensor}, series = {Proceedings of State Engineering University Armenia : Series Information technologies, electronics, radio engineering}, volume = {Iss. 17}, booktitle = {Proceedings of State Engineering University Armenia : Series Information technologies, electronics, radio engineering}, number = {No. 1}, pages = {69 -- 76}, year = {2014}, language = {en} } @article{NaetherRolkaPoghossianetal.2005, author = {N{\"a}ther, Niko and Rolka, David and Poghossian, Arshak and Koudelka-Hep, M. and Sch{\"o}ning, Michael Josef}, title = {Two microcell flow-injection analysis (FIA) platforms for capacitive silicon-based field-effect sensors}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, doi = {10.1016/j.electacta.2005.04.066}, pages = {924 -- 929}, year = {2005}, language = {en} } @article{StulpeBjelakovic2005, author = {Stulpe, Werner and Bjelakovic, Igor}, title = {The Projective Hilbert Space as a Classical Phase Space for Nonrelativistic Quantum Dynamics. Bjelakovic, Igor; Stulpe, Werner}, series = {International Journal of Theoretical Physics. 44 (2005), H. 11}, journal = {International Journal of Theoretical Physics. 44 (2005), H. 11}, isbn = {1572-9575}, pages = {2041 -- 2049}, year = {2005}, language = {en} } @article{PoghossianCherstvyIngebrandtetal.2005, author = {Poghossian, Arshak and Cherstvy, A. and Ingebrandt, S. and Offenh{\"a}usser, A. and Sch{\"o}ning, Michael Josef}, title = {Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices}, series = {Sensors and Actuators B. 111-112 (2005)}, journal = {Sensors and Actuators B. 111-112 (2005)}, isbn = {0925-4005}, pages = {470 -- 480}, year = {2005}, language = {en} } @article{PitaKraemerZouhetal.2008, author = {Pita, Marcos and Kr{\"a}mer, Melina and Zouh, Jian and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Fernandez, Victor M. and Katz, Evgeny}, title = {Optoelectronic Properties of Nanostructured Ensembles Controlled by Biomolecular Logic Systems}, series = {ACS Nano. 10 (2008), H. 2}, journal = {ACS Nano. 10 (2008), H. 2}, isbn = {1936-086X}, pages = {2160 -- 2166}, year = {2008}, language = {en} } @incollection{PoghossianSchusserBaeckeretal.2015, author = {Poghossian, Arshak and Schusser, Sebastian and B{\"a}cker, M. and Leinhos, Marcel and Sch{\"o}ning, Michael Josef}, title = {Real-time in-situ electrical monitoring of the degradation of biopolymers using semiconductor field-effect devices}, series = {Biodegradable biopolymers. Vol. 1}, booktitle = {Biodegradable biopolymers. Vol. 1}, publisher = {Nova Science Publ.}, address = {Hauppauge}, isbn = {978-1-63483-632-6}, pages = {135 -- 153}, year = {2015}, language = {en} } @article{MaggakisKelemenDigelArtmann2005, author = {Maggakis-Kelemen, Christina and Digel, Ilya and Artmann, Gerhard}, title = {Polystyrene sulfonate/Polyallylamine hydrochloride microcapsules as potential artificial red blood cells - improvement of capsule flexibility}, series = {Biomedizinische Technik. 50 (2005), H. Erg.-Bd. 1}, journal = {Biomedizinische Technik. 50 (2005), H. Erg.-Bd. 1}, pages = {324 -- 326}, year = {2005}, language = {en} } @inproceedings{PoghossianBronderWuetal.2015, author = {Poghossian, Arshak and Bronder, Thomas and Wu, Chunsheng and Sch{\"o}ning, Michael Josef}, title = {Label-free sensing of biomolecules by their intrinsic molecular charge using field-effect devices}, series = {Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13}, booktitle = {Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13}, isbn = {978-5-8084-1991-9}, pages = {61 -- 63}, year = {2015}, language = {en} } @article{GasparyanPoghossianVitusevichetal.2011, author = {Gasparyan, Ferdinand V. and Poghossian, Arshak and Vitusevich, Svetlana A. and Petrychuk, Mykhaylo V. and Sydoruk, Viktor A. and Siqueira, Jos{\´e} R. Jr. and Oliveira, Osvaldo N. Jr. and Offenh{\"a}usser, Andreas and Sch{\"o}ning, Michael Josef}, title = {Low-Frequency Noise in Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers}, series = {IEEE Sensors Journal. 11 (2011), H. 1}, journal = {IEEE Sensors Journal. 11 (2011), H. 1}, publisher = {IEEE}, address = {New York}, isbn = {1530-437X}, pages = {142 -- 149}, year = {2011}, language = {en} } @inproceedings{JablonskiKochBronderetal.2017, author = {Jablonski, Melanie and Koch, Claudia and Bronder, Thomas and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Biosensors Modified with Tobacco Mosaic Virus Nanotubes as Enzyme Nanocarrier}, series = {MDPI Proceeding}, volume = {1}, booktitle = {MDPI Proceeding}, number = {4}, doi = {10.3390/proceedings1040505}, pages = {4}, year = {2017}, language = {en} } @inproceedings{PhamNguyenStaat2012, author = {Pham, Phu Tinh and Nguyen, Thanh Ngoc and Staat, Manfred}, title = {FEM based shakedown analysis of hardening structures}, series = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, booktitle = {Proceedings International Conference on Advances in Computational Mechanics (ACOME)}, pages = {870 -- 882}, year = {2012}, language = {en} } @incollection{PoghossianSchoening2017, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Nanomaterial-Modified Capacitive Field-Effect Biosensors}, series = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, booktitle = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, publisher = {Springer}, address = {Berlin, Heidelberg}, doi = {10.1007/5346_2017_2}, pages = {1 -- 25}, year = {2017}, abstract = {The coupling of charged molecules, nanoparticles, and more generally, inorganic/organic nanohybrids with semiconductor field-effect devices based on an electrolyte-insulator-semiconductor (EIS) system represents a very promising strategy for the active tuning of electrochemical properties of these devices and, thus, opening new opportunities for label-free biosensing by the intrinsic charge of molecules. The simplest field-effect sensor is a capacitive EIS sensor, which represents a (bio-)chemically sensitive capacitor. In this chapter, selected examples of recent developments in the field of label-free biosensing using nanomaterial-modified capacitive EIS sensors are summarized. In the first part, we present applications of EIS sensors modified with negatively charged gold nanoparticles for the label-free electrostatic detection of positively charged small proteins and macromolecules, for monitoring the layer-by-layer formation of oppositely charged polyelectrolyte (PE) multilayers as well as for the development of an enzyme-based biomolecular logic gate. In the second part, examples of a label-free detection by means of EIS sensors modified with a positively charged weak PE layer are demonstrated. These include electrical detection of on-chip and in-solution hybridized DNA (deoxyribonucleic acid) as well as an EIS sensor with pH-responsive weak PE/enzyme multilayers for enhanced field-effect biosensing.}, language = {en} } @article{Digel2010, author = {Digel, Ilya}, title = {In-situ biological decontamination of an ice melting probe}, year = {2010}, language = {en} } @article{StulpeScholz2009, author = {Stulpe, Werner and Scholz, Erhard}, title = {Hilbert Space / Scholz, Erhard ; Stulpe, Werner}, series = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, journal = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-70622-9}, pages = {291 -- 295}, year = {2009}, language = {en} } @article{Stulpe2009, author = {Stulpe, Werner}, title = {Density Operator}, series = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, journal = {Compendium of Quantum Physics : concepts, experiments, history and philosophy / Daniel Greenberger ... ed.}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-70622-9}, pages = {166 -- 169}, year = {2009}, language = {en} } @article{TranStaat2020, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {Direct plastic structural design under lognormally distributed strength by chance constrained programming}, series = {Optimization and Engineering}, volume = {21}, journal = {Optimization and Engineering}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-2924}, doi = {10.1007/s11081-019-09437-2}, pages = {131 -- 157}, year = {2020}, abstract = {We propose the so-called chance constrained programming model of stochastic programming theory to analyze limit and shakedown loads of structures under random strength with a lognormal distribution. A dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) is used with three-node linear triangular elements.}, language = {en} } @article{GunGutkinLevetal.2011, author = {Gun, Jenny and Gutkin, Vitaly and Lev, Ovadia and Boyen, Hans-Gerd and Saitner, Marc and Wagner, Patrick and Olieslaeger, Marc D´ and Abouzar, Maryam H. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Tracing gold nanoparticle charge by electrolyte-insulator-semiconductor devices}, series = {Journal of Physical Chemistry C. 115 (2011), H. 11}, journal = {Journal of Physical Chemistry C. 115 (2011), H. 11}, publisher = {American Cemical Society}, address = {Washington, DC}, isbn = {1932-7455}, pages = {4439 -- 4445}, year = {2011}, language = {en} } @article{GunRizkovLevetal.2008, author = {Gun, Jenny and Rizkov, Dan and Lev, Ovadia and Abouzar, Maryam H. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Oxygen plasma-treated gold nanoparticle-based field-effect devices as transducer structures for bio-chemical sensing}, series = {Microchimica Acta. 164 (2008), H. 3-4}, journal = {Microchimica Acta. 164 (2008), H. 3-4}, isbn = {1436-5073}, pages = {395 -- 404}, year = {2008}, language = {en} } @article{PoghossianYoshinobuSchoening2003, author = {Poghossian, Arshak and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Flow-velocity microsensors based on semiconductor field-effect structures}, series = {Sensors. 3 (2003), H. 7}, journal = {Sensors. 3 (2003), H. 7}, isbn = {1424-8220}, pages = {202 -- 212}, year = {2003}, language = {en} } @article{DigelDemirciTemizArtmannetal.2004, author = {Digel, Ilya and Demirci, Taylan and Temiz Artmann, Ayseg{\"u}l and Nishikawa, K.}, title = {Free Radical Nature of the Bactericidal Effect of Plasma-Generated Cluster Ions (PCIs)}, series = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, journal = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, isbn = {0932-4666}, pages = {982 -- 983}, year = {2004}, language = {en} } @incollection{PoghossianSchoening2006, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Silicon-based chemical and biological field-effect sensors}, series = {Encyclopedia of Sensors. Vol. 9 S - Sk}, booktitle = {Encyclopedia of Sensors. Vol. 9 S - Sk}, publisher = {ASP, American Scientific Publ.}, address = {Stevenson Ranch, Calif.}, isbn = {1-58883-065-9}, pages = {463 -- 534}, year = {2006}, language = {en} } @article{PoghossianAbouzarChristiaensetal.2008, author = {Poghossian, Arshak and Abouzar, Maryam H. and Christiaens, P. and Williams, O. A. and Haenen, K. and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors}, series = {Journal of Contemporary Physics. 43 (2008), H. 2}, journal = {Journal of Contemporary Physics. 43 (2008), H. 2}, isbn = {1934-9378}, pages = {77 -- 81}, year = {2008}, language = {en} } @article{IngebrandtHanNakamuraetal.2007, author = {Ingebrandt, S. and Han, Y. and Nakamura, F. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Offenh{\"a}usser, A.}, title = {Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors}, series = {Biosensors and Bioelectronics. 22 (2007), H. 12}, journal = {Biosensors and Bioelectronics. 22 (2007), H. 12}, isbn = {0956-5663}, pages = {2834 -- 2840}, year = {2007}, language = {en} } @article{BronderWuPoghossianetal.2014, author = {Bronder, Thomas and Wu, Chunsheng and Poghossian, Arshak and Werner, Frederik and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Label-free detection of DNA hybridization with light-addressable potentiometric sensors: comparison of various DNA-immobilization strategies}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.647}, pages = {755 -- 758}, year = {2014}, abstract = {Light-addressable potentiometric sensors (LAPS) consisting of a p-Si-SiO2 and p-Si-SiO2-Au structure, respectively, have been tested for a label-free electrical detection of DNA (deoxyribonucleic acid) hybridization. Three different strategies for immobilizing single-stranded probe DNA (ssDNA) molecules on a LAPS surface have been studied and compared: (a) immobilization of thiol-modified ssDNA on the patterned Au surface via gold-thiol bond, (b) covalent immobilization of amino-modified ssDNA onto the SiO2 surface functionalized with 3-aminopropyltriethoxysilane and (c) layer-by-layer adsorption of negatively charged ssDNA on a positively charged weak polyelectrolyte layer of poly(allylamine hydrochloride).}, language = {en} } @article{KatzPoghossianSchoening2017, author = {Katz, Evgeny and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics}, series = {Analytical and Bioanalytical Chemistry}, volume = {409}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer}, address = {Berlin}, issn = {1618-2650}, doi = {10.1007/s00216-016-0079-7}, pages = {81 -- 94}, year = {2017}, abstract = {The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion.}, language = {en} } @article{PoghossianSchoening2020, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect eis chemical sensors and biosensors: A status report}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20195639}, pages = {Artikel 5639}, year = {2020}, abstract = {Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed.}, language = {en} } @article{StulpeBugajskiHellwig1998, author = {Stulpe, Werner and Bugajski, S. and Hellwig, K.-E.}, title = {On Fuzzy Random Variables and Statistical Maps. Bugajski, S.; Hellwig, K.-E.; Stulpe, W.}, series = {Reports on Mathematical Physics. 41 (1998), H. 1}, journal = {Reports on Mathematical Physics. 41 (1998), H. 1}, isbn = {0034-4877}, pages = {1 -- 11}, year = {1998}, language = {en} } @article{Staat2012, author = {Staat, Manfred}, title = {Limit and shakedown analysis under uncertainty}, series = {Tap chi Khoa hoc \& ung dung - Dai hoc Ton Duc Thang}, volume = {19}, journal = {Tap chi Khoa hoc \& ung dung - Dai hoc Ton Duc Thang}, pages = {45 -- 47}, year = {2012}, language = {en} } @article{MolinnusHardtSiegertetal.2018, author = {Molinnus, Denise and Hardt, Gabriel and Siegert, Petra and Willenberg, Holger S. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline in Blood Plasma as Biomarker for Adrenal Venous Sampling}, series = {Electroanalysis}, volume = {30}, journal = {Electroanalysis}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201800026}, pages = {937 -- 942}, year = {2018}, abstract = {An amperometric bi-enzyme biosensor based on substrate recycling principle for the amplification of the sensor signal has been developed for the detection of adrenaline in blood. Adrenaline can be used as biomarker verifying successful adrenal venous sampling procedure. The adrenaline biosensor has been realized via modification of a galvanic oxygen sensor with a bi-enzyme membrane combining a genetically modified laccase and a pyrroloquinoline quinone-dependent glucose dehydrogenase. The measurement conditions such as pH value and temperature were optimized to enhance the sensor performance. A high sensitivity and a low detection limit of about 0.5-1 nM adrenaline have been achieved in phosphate buffer at pH 7.4, relevant for measurements in blood samples. The sensitivity of the biosensor to other catecholamines such as noradrenaline, dopamine and dobutamine has been studied. Finally, the sensor has been successfully applied for the detection of adrenaline in human blood plasma.}, language = {en} } @article{PoghossianAbouzarChristiaensetal.2007, author = {Poghossian, Arshak and Abouzar, Maryam H. and Christiaens, P. and Williams, O. A. and Haenen, K. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Nanocrystalline diamond-based field-effect (bio-)chemical sensor}, series = {8. Dresdner Sensor-Symposium : Sensoren f{\"u}r Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme f{\"u}r die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung f{\"u}r die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.)}, journal = {8. Dresdner Sensor-Symposium : Sensoren f{\"u}r Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme f{\"u}r die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung f{\"u}r die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.)}, publisher = {TUDpress, Verl. der Wissenschaften}, address = {Dresden}, isbn = {978-3-940046-45-1}, pages = {191 -- 194}, year = {2007}, language = {en} } @inproceedings{BegingPoghossianMlyneketal.2010, author = {Beging, Stefan and Poghossian, Arshak and Mlynek, D. and Hataihimakul, S. and Pedraza, A. and Dhawan, S. and Laube, N. and Kleinen, L. and Baldsiefen, G. and Busch, H. and Sch{\"o}ning, Michael Josef}, title = {Ion-selective sensors for the determination of the risk of urinary stone formation}, series = {Micro- and Nanosystems in biochemical diagnosis : Principles and applications}, booktitle = {Micro- and Nanosystems in biochemical diagnosis : Principles and applications}, address = {Warsaw}, pages = {74 -- 80}, year = {2010}, language = {en} } @phdthesis{Tran2008, author = {Tran, Thanh Ngoc}, title = {Limit and shakedown analysis of plates and shells including uncertainties}, year = {2008}, language = {en} } @article{SchusserKrischerBaeckeretal.2015, author = {Schusser, Sebastian and Krischer, Maximillian and B{\"a}cker, Matthias and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors}, series = {Analytical Chemistry}, volume = {87}, journal = {Analytical Chemistry}, number = {13}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-6882}, doi = {10.1021/acs.analchem.5b00617}, pages = {6607 -- 6613}, year = {2015}, abstract = {Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(d,l-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers.}, language = {en} }