@article{KirchnerOberlaenderFriedrichetal.2010, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Friedrich, Peter and Rysstad, Gunnar and Berger, J{\"o}rg and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Realization of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry}, series = {Procedia Engineering}, volume = {5}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2010.09.098}, pages = {264 -- 267}, year = {2010}, abstract = {A calorimetric gas sensor is presented for the monitoring of gas-phase H2O2 at elevated temperature during sterilization processes in aseptic food industry. The sensor consists of two temperature-sensitive thin-film resistances built up on a polyimide foil with a thickness of 25 μm, which are passivated with a layer of SU-8 photo resist and catalytically activated with manganese(IV) oxide. Instead of an active heating structure, the calorimetric sensor utilizes the elevated temperature of an evaporated H2O2 aerosol. In an experimental set-up, the sensor has shown a sensitivity of 4.78 °C/(\%v/v) in a H2O2 concentration range of 0 to 10\% v/v at an evaporation temperature of 240 ∘C. Furthermore, the sensor possesses the same, unchanged sensor signal even at varied evaporation temperatures of the gas stream. The sensor characterization demonstrates the suitability of the calorimetric gas sensor for monitoring the efficiency of sterilization processes.}, language = {en} } @article{WagnerMiyamotoSchoeningetal.2010, author = {Wagner, Torsten and Miyamoto, Ko-ichiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Novel combination of digital light processing (DLP) and light-addressable potentiometric sensors (LAPS) for flexible chemical imaging}, series = {Procedia Engineering}, volume = {5}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2010.09.161}, pages = {520 -- 523}, year = {2010}, abstract = {Chemical imaging systems allow the visualisation of the distribution of chemical species on the sensor surface. This work represents a new flexible approach of read out in a light-addressable potentiometric sensor (LAPS) with the help of a digital light processing (DLP) set-up. The DLP, known well for video projectors, consists of a mirror-array MEMS device which allows fast and flexible generation of light patterns. With the help of these light patterns the sensor surface of the LAPS device can be read out sequentially in a raster like scheme (scanning LAPS). The DLP approach has several advantages compared to conventional scanning LAPS set-ups, e.g., the spot size, the shape and the intensity of the light pointer can be changed easily and no mechanical movement is necessary, which reduces the size of the set-up and increases the stability and speed of measurement.}, language = {en} }