@article{StreunBrandenburgLarueetal.2003, author = {Streun, M. and Brandenburg, G. and Larue, H. and Saleh, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {Pulse shape discrimination of LSO and LuYAP scintillators for depth of interaction detection in PET}, series = {2002 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2002 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, issn = {1082-3654}, pages = {1636 -- 1639}, year = {2003}, abstract = {A feasible way to gain the depth of interaction information in a PET scanner is the use of phoswich detectors. In general the layer of interaction is identified front the pulse shape of the corresponding scintillator material. In this work pulses from LSO and LuYAP crystals were investigated in order to find a practical method of distinguishing. It turned out that such a pulse processing could he kept simple due to an additional slow component in the light decay of the LuYAP pulse. At the same time the short decay time guarantees that the major amount of the light output is still collected within a short pulse recording time.}, language = {en} } @article{StreunBrandenburgLarueetal.2003, author = {Streun, M. and Brandenburg, G. and Larue, H. and Saleh, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {Pulse shape discrimination of LSO and LuYAP scintillators for depth of interaction detection in PET}, series = {IEEE Transactions on Nuclear Science}, volume = {50}, journal = {IEEE Transactions on Nuclear Science}, number = {3}, isbn = {0018-9499}, pages = {344 -- 347}, year = {2003}, abstract = {A feasible way to gain the depth of interaction information in a positron emission tomography scanner is the use of phoswich detectors. In general, the layer of interaction is identified from the pulse shape of the corresponding scintillator material. In this work, pulses from LSO and LuYAP crystals were investigated in order to find a practical method of distinguishing. It turned out that such a pulse processing could be kept simple because of an additional slow component in the light decay of the LuYAP pulse. At the same time, the short decay time guarantees that the major amount of the light output is still collected within a short pulse recording time.}, language = {en} }