@incollection{Laack2020, author = {Laack, Walter van}, title = {Twee Kanten van {\´e}{\´e}n Medaille}, series = {Het Geheim van Elysion : 45 Jaar Studies naar Nabij-de-Dood-Ervaringen over Bewustzijn in Liefde zonder Waarheen}, booktitle = {Het Geheim van Elysion : 45 Jaar Studies naar Nabij-de-Dood-Ervaringen over Bewustzijn in Liefde zonder Waarheen}, publisher = {Van Warven}, address = {Kampen}, isbn = {978-94-93175-44-0}, pages = {97 -- 105}, year = {2020}, language = {nl} } @incollection{EngelmannShashaSlabu2021, author = {Engelmann, Ulrich M. and Shasha, Carolyn and Slabu, Ioana}, title = {Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating}, series = {Magnetic nanoparticles in human health and medicine}, booktitle = {Magnetic nanoparticles in human health and medicine}, publisher = {Wiley-Blackwell}, address = {Hoboken, New Jeersey}, isbn = {978-1-119-75467-1}, pages = {327 -- 354}, year = {2021}, language = {en} } @incollection{PieronekKleefeld2019, author = {Pieronek, Lukas and Kleefeld, Andreas}, title = {The Method of Fundamental Solutions for Computing Interior Transmission Eigenvalues of Inhomogeneous Media}, series = {Integral Methods in Science and Engineering: Analytic Treatment and Numerical Approximations}, booktitle = {Integral Methods in Science and Engineering: Analytic Treatment and Numerical Approximations}, editor = {Constanda, Christian and Harris, Paul}, publisher = {Birkh{\"a}user}, address = {Cham}, isbn = {978-3-030-16077-7}, doi = {10.1007/978-3-030-16077-7_28}, pages = {353 -- 365}, year = {2019}, abstract = {The method of fundamental solutions is applied to the approximate computation of interior transmission eigenvalues for a special class of inhomogeneous media in two dimensions. We give a short approximation analysis accompanied with numerical results that clearly prove practical convenience of our alternative approach.}, language = {en} } @incollection{AbeleKleefeld2020, author = {Abele, Daniel and Kleefeld, Andreas}, title = {New Numerical Results for the Optimization of Neumann Eigenvalues}, series = {Computational and Analytic Methods in Science and Engineering}, booktitle = {Computational and Analytic Methods in Science and Engineering}, editor = {Constanda, Christian}, publisher = {Birkh{\"a}user}, address = {Cham}, isbn = {978-3-030-48185-8 (Print)}, doi = {10.1007/978-3-030-48186-5_1}, pages = {1 -- 20}, year = {2020}, abstract = {We present new numerical results for shape optimization problems of interior Neumann eigenvalues. This field is not well understood from a theoretical standpoint. The existence of shape maximizers is not proven beyond the first two eigenvalues, so we study the problem numerically. We describe a method to compute the eigenvalues for a given shape that combines the boundary element method with an algorithm for nonlinear eigenvalues. As numerical optimization requires many such evaluations, we put a focus on the efficiency of the method and the implemented routine. The method is well suited for parallelization. Using the resulting fast routines and a specialized parametrization of the shapes, we found improved maxima for several eigenvalues.}, language = {en} }