@inproceedings{GrundmannBieleDachwaldetal.2017, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian D. and Lange, Caroline and Ulamec, Stephan and Ziach, Christian and Spr{\"o}witz, Tom and Ruffer, Michael and Seefeldt, Patric and Spietz, Peter and Toth, Norbert and Mimasu, Yuya and Rittweger, Andreas and Bibring, Jean-Pierre and Braukhane, Andy and Boden, Ralf Christian and Dumont, Etienne and Jahnke, Stephan Siegfried and Jetzschmann, Michael and Kr{\"u}ger, Hans and Lange, Michael and Gomez, Antonio Martelo and Massonett, Didier and Okada, Tatsuaki and Sagliano, Marco and Sasaki, Kaname and Schr{\"o}der, Silvio and Sippel, Martin and Skoczylas, Thomas and Wejmo, Elisabet}, title = {Small landers and separable sub-spacecraft for near-term solar sails}, series = {The Fourth International Symposium on Solar Sailing 2017}, booktitle = {The Fourth International Symposium on Solar Sailing 2017}, pages = {1 -- 10}, year = {2017}, abstract = {Following the successful PHILAE landing with ESA's ROSETTA probe and the launch of the MINERVA rovers and the Mobile Asteroid Surface Scout, MASCOT, aboard the JAXA space probe, HAYABUSA2, to asteroid (162173) Ryugu, small landers have found increasing interest. Integrated at the instrument level in their mothership they support small solar system body studies. With efficient capabilities, resource-friendly design and inherent robustness they are an attractive exploration mission element. We discuss advantages and constraints of small sub-spacecraft, focusing on emerging areas of activity such as asteroid diversity studies, planetary defence, and asteroid mining, on the background of our projects PHILAE, MASCOT, MASCOT2, the JAXA-DLR Solar Power Sail Lander Design Study, and others. The GOSSAMER-1 solar sail deployment concept also involves independent separable sub-spacecraft operating synchronized to deploy the sail. Small spacecraft require big changes in the way we do things and occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. In a Constraints-Driven Engineering environment we apply Concurrent Design and Engineering (CD/CE), Concurrent Assembly, Integration and Verification (CAIV) and Model-Based Systems Engineering (MBSE). Near-term solar sails will likely be small spacecraft which we expect to harmonize well with nano-scale separable instrument payload packages.}, language = {en} } @inproceedings{LoebSchartnerDachwaldetal.2011, author = {Loeb, Horst W. and Schartner, Karl-Heinz and Dachwald, Bernd and Ohndorf, Andreas and Seboldt, Wolfgang}, title = {An Interstellar - Heliopause mission using a combination of solar/radioisotope electric propulsion}, series = {Presented at the 32nd International Electric Propulsion Conference}, booktitle = {Presented at the 32nd International Electric Propulsion Conference}, pages = {1 -- 7}, year = {2011}, abstract = {There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft travelling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by ESA.Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope electric propulsion. As a further alternative, we here investigate a combination of solar-electric propulsion and radioisotope-electric propulsion. The solar-electric propulsion stage consists of six 22 cm diameter "RIT-22"ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW BOM is provided by a light-weight solar array. The REP-stage consists of four space-proven 10 cm diameter "RIT-10" ion thrusters that will be operating one after the other for 9 yrs in total. Four advanced radioisotope generators provide 648 W at BOM. The scientific instrument package is oriented at earlier studies. For its mass and electric power requirement 35 kg and 35 W are assessed, respectively. Optimized trajectory calculations, treated in a separate contribution, are based on our "InTrance" method.The program yields a burn out of the REP stage in a distance of 79.6 AU for a usage of 154 kg of Xe propellant. With a C3 = 45,1 (km/s)2 a heliocentric probe velocity of 10 AU/yr is reached at this distance, provided a close Jupiter gravity assist adds a velocity increment of 2.7 AU/yr. A transfer time of 23.8 yrs results for this scenario requiring about 450 kg Xe for the SEP stage, jettisoned at 3 AU. We interpret the SEP/REP propulsion as a competing alternative to solar sail and ballistic/REP propulsion. Omiting a Jupiter fly-by even allows more launch flexibility, leaving the mission duration in the range of the ESA specification.}, language = {en} } @inproceedings{GrundmannLangeDachwaldetal.2015, author = {Grundmann, Jan Thimo and Lange, Caroline and Dachwald, Bernd and Grimm, Christian and Koch, Aaron and Ulamec, Stephan}, title = {Small Spacecraft in Planetary Defence Related Applications-Capabilities, Constraints, Challenges}, series = {IEEE Aerospace Conference}, booktitle = {IEEE Aerospace Conference}, pages = {1 -- 18}, year = {2015}, abstract = {In this paper we present an overview of the characteristics and peculiarities of small spacecraft missions related to planetary defence applications. We provide a brief overview of small spacecraft missions to small solar system bodies. On this background we present recent missions and selected projects and related studies at the German Aerospace Center, DLR, that contribute to planetary defence related activities. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander recently arrived on comet 67P/Churyumov-Gerasimenko aboard ESA's ROSETTA comet rendezvous mission, and the Mobile Asteroid Surface Scout, MASCOT, now underway to near-Earth asteroid (162173) 1999 JU3 aboard the Japanese sample-return probe HAYABUSA-2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA,JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Eath binary asteroid (65803) Didymos.}, language = {en} } @incollection{BorggrafeOhndorfDachwaldetal.2012, author = {Borggrafe, Andreas and Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang}, title = {Analysis of interplanetary solar sail trajectories with attitude dynamics}, series = {Dynamics and Control of Space Systems 2012}, booktitle = {Dynamics and Control of Space Systems 2012}, publisher = {Univelt Inc}, address = {San Diego}, isbn = {978-0-87703-587-9}, pages = {1553 -- 1569}, year = {2012}, abstract = {We present a new approach to the problem of optimal control of solar sails for low-thrust trajectory optimization. The objective was to find the required control torque magnitudes in order to steer a solar sail in interplanetary space. A new steering strategy, controlling the solar sail with generic torques applied about the spacecraft body axes, is integrated into the existing low-thrust trajectory optimization software InTrance. This software combines artificial neural networks and evolutionary algorithms to find steering strategies close to the global optimum without an initial guess. Furthermore, we implement a three rotational degree-of-freedom rigid-body attitude dynamics model to represent the solar sail in space. Two interplanetary transfers to Mars and Neptune are chosen to represent typical future solar sail mission scenarios. The results found with the new steering strategy are compared to the existing reference trajectories without attitude dynamics. The resulting control torques required to accomplish the missions are investigated, as they pose the primary requirements to a real on-board attitude control system.}, language = {en} } @inproceedings{PirovanoSeefeldtDachwaldetal.2015, author = {Pirovano, Laura and Seefeldt, Patric and Dachwald, Bernd and Noomen, Ron}, title = {Attitude and orbital modeling of an uncontrolled solar-sail experiment in low-Earth orbit}, series = {25th International Symposium on Space Flight Dynamics ISSFD}, booktitle = {25th International Symposium on Space Flight Dynamics ISSFD}, pages = {1 -- 15}, year = {2015}, abstract = {Gossamer-1 is the first project of the three-step Gossamer roadmap, the purpose of which is to develop, prove and demonstrate that solar-sail technology is a safe and reliable propulsion technique for long-lasting and high-energy missions. This paper firstly presents the structural analysis performed on the sail to understand its elastic behavior. The results are then used in attitude and orbital simulations. The model considers the main forces and torques that a satellite experiences in low-Earth orbit coupled with the sail deformation. Doing the simulations for varying initial conditions in attitude and rotation rate, the results show initial states to avoid and maximum rotation rates reached for correct and faulty deployment of the sail. Lastly comparisons with the classic flat sail model are carried out to test the hypothesis that the elastic behavior does play a role in the attitude and orbital behavior of the sail}, language = {en} } @inproceedings{DachwaldKahleWie2006, author = {Dachwald, Bernd and Kahle, Ralph and Wie, Bong}, title = {Solar sail Kinetic Energy Impactor (KEI) mission design tradeoffs for impacting and deflecting asteroid 99942 Apophis}, series = {AIAA/AAS Astrodynamics Specialist Conference and Exhibit}, booktitle = {AIAA/AAS Astrodynamics Specialist Conference and Exhibit}, doi = {10.2514/6.2006-6178}, pages = {1 -- 20}, year = {2006}, abstract = {Near-Earth asteroid 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several so-called gravitational keyholes during its 2029-encounter. Several pre-2029-deflection scenarios to prevent Apophis from doing this have been investigated so far. Because the keyholes are less than 1 km in size, a pre-2029 kinetic impact is clearly the best option because it requires only a small change in Apophis' orbit to nudge it out of a keyhole. A single solar sail Kinetic Energy Impactor (KEI) spacecraft that impacts Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages at about 0.75 AU would be a feasible option to do this. The spacecraft consists of a 160 m x 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. In this paper, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, solar sail Kinetic Energy Impactor (KEI) spacecraft are still a feasible option to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value. In this paper, we elaborate potential pre- and post-2029 KEI impact scenarios for a launch in 2020, and investigate tradeoffs between different mission parameters.}, language = {en} } @inproceedings{HallmannHeideckerSchlottereretal.2016, author = {Hallmann, Marcus and Heidecker, Ansgar and Schlotterer, Markus and Dachwald, Bernd}, title = {GTOC8: results and methods of team 15 DLR}, series = {26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA}, booktitle = {26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA}, year = {2016}, abstract = {This paper describes the results and methods used during the 8th Global Trajectory Optimization Competition (GTOC) of the DLR team. Trajectory optimization is crucial for most of the space missions and usually can be formulated as a global optimization problem. A lot of research has been done to different type of mission problems. The most demanding ones are low thrust transfers with e.g. gravity assist sequences. In that case the optimal control problem is combined with an integer problem. In most of the GTOCs we apply a filtering of the problem based on domain knowledge.}, language = {en} } @inproceedings{DupratDachwaldHilchenbachetal.2013, author = {Duprat, J. and Dachwald, Bernd and Hilchenbach, M. and Engrand, Cecile and Espe, C. and Feldmann, M. and Francke, G. and G{\"o}r{\"o}g, Mark and L{\"u}sing, N. and Langenhorst, Falko}, title = {The MARVIN project: a micrometeorite harvester in Antarctic snow}, series = {44th Lunar and Planetary Science Conference}, booktitle = {44th Lunar and Planetary Science Conference}, year = {2013}, abstract = {MARVIN is an automated drilling and melting probe dedicated to collect pristine interplanetary dust particles (micrometeorites) from central Antarctica snow.}, language = {en} } @inproceedings{DachwaldSeboldtLoebetal.2007, author = {Dachwald, Bernd and Seboldt, Wolfgang and Loeb, Horst W. and Schartner, Karl-Heinz}, title = {A comparison of SEP and NEP for a main belt asteroid sample return mission}, series = {7th International Symposium on Launcher Technologies, Barcelona, Spain, 02-05 April 2007}, booktitle = {7th International Symposium on Launcher Technologies, Barcelona, Spain, 02-05 April 2007}, pages = {1 -- 10}, year = {2007}, abstract = {Innovative interplanetary deep space missions, like a main belt asteroid sample return mission, require ever larger velocity increments (∆V s) and thus ever more demanding propulsion capabilities. Providing much larger exhaust velocities than chemical high-thrust systems, electric low-thrust space-propulsion systems can significantly enhance or even enable such high-energy missions. In 1995, a European-Russian Joint Study Group (JSG) presented a study report on "Advanced Interplanetary Missions Using Nuclear-Electric Propulsion" (NEP). One of the investigated reference missions was a sample return (SR) from the main belt asteroid (19) Fortuna. The envisaged nuclear power plant, Topaz-25, however, could not be realized and also the worldwide developments in space reactor hardware stalled. In this paper, we investigate, whether such a mission is also feasible using a solar electric propulsion (SEP) system and compare our SEP results to corresponding NEP results.}, language = {en} } @inproceedings{Dachwald2005, author = {Dachwald, Bernd}, title = {Global optimization of low-thrust space missions using evolutionary neurocontrol}, series = {Proceedings of the international workshop on global optimization}, booktitle = {Proceedings of the international workshop on global optimization}, pages = {85 -- 90}, year = {2005}, abstract = {Low-thrust space propulsion systems enable flexible high-energy deep space missions, but the design and optimization of the interplanetary transfer trajectory is usually difficult. It involves much experience and expert knowledge because the convergence behavior of traditional local trajectory optimization methods depends strongly on an adequate initial guess. Within this extended abstract, evolutionary neurocontrol, a method that fuses artificial neural networks and evolutionary algorithms, is proposed as a smart global method for low-thrust trajectory optimization. It does not require an initial guess. The implementation of evolutionary neurocontrol is detailed and its performance is shown for an exemplary mission.}, language = {en} } @inproceedings{DachwaldBaturkinCoverstoneetal.2005, author = {Dachwald, Bernd and Baturkin, Volodymyr and Coverstone, Victoria and Diedrich, Ben and Garbe, Gregory and G{\"o}rlich, Marianne and Leipold, Manfred and Lura, Franz and Macdonald, Malcolm and McInnes, Colin and Mengali, Giovanni and Quarta, Alessandro and Rios-Reyes, Leonel and Scheeres, Daniel J. and Seboldt, Wolfgang and Wie, Bong}, title = {Potential effects of optical solar sail degredation on trajectory design}, series = {AAS/AIAA Astrodynamics Specialist}, booktitle = {AAS/AIAA Astrodynamics Specialist}, pages = {1 -- 23}, year = {2005}, abstract = {The optical properties of the thin metalized polymer films that are projected for solar sails are assumed to be affected by the erosive effects of the space environment. Their degradation behavior in the real space environment, however, is to a considerable degree indefinite, because initial ground test results are controversial and relevant inspace tests have not been made so far. The standard optical solar sail models that are currently used for trajectory design do not take optical degradation into account, hence its potential effects on trajectory design have not been investigated so far. Nevertheless, optical degradation is important for high-fidelity solar sail mission design, because it decreases both the magnitude of the solar radiation pressure force acting on the sail and also the sail control authority. Therefore, we propose a simple parametric optical solar sail degradation model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Using our model, the effects of different optical degradation behaviors on trajectory design are investigated for various exemplary missions.}, language = {en} } @article{UysalCreutzFiratetal.2022, author = {Uysal, Karya and Creutz, Till and Firat, Ipek Seda and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {Bio-functionalized ultra-thin, large-area and waterproof silicone membranes for biomechanical cellular loading and compliance experiments}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, pages = {2213}, year = {2022}, abstract = {Biocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.) must be precisely controlled. The following parameters of membrane fabrication by means of the Floating-on-Water (FoW) method were investigated: (1) PDMS volume, (2) ambient temperature, (3) membrane deflection and (4) membrane mechanical compliance. Significant differences were found between all PDMS volumes and thicknesses tested (p < 0.01). They also differed from the calculated values. At room temperatures between 22 and 26 °C, significant differences in average thickness values were found, as well as a continuous decrease in thicknesses within a 4 °C temperature elevation. No correlation was found between the membrane thickness groups (between 3-4 µm) in terms of deflection and compliance. We successfully present a fabrication method for thin bio-functionalized membranes in conjunction with a four-step quality management system. The results highlight the importance of tight regulation of production parameters through quality control. The use of membranes described here could also become the basis for material testing on thin, viscous layers such as polymers, dyes and adhesives, which goes far beyond biological applications.}, language = {en} } @article{LiphardtFernandezGonzaloAlbrachtetal.2023, author = {Liphardt, Anna-Maria and Fernandez-Gonzalo, Rodrigo and Albracht, Kirsten and Rittweger, J{\"o}rn and Vico, Laurence}, title = {Musculoskeletal research in human space flight - unmet needs for the success of crewed deep space exploration}, series = {npj Microgravity}, volume = {9}, journal = {npj Microgravity}, number = {Article number: 9}, publisher = {Springer Nature}, issn = {2373-8065}, doi = {10.1038/s41526-023-00258-3}, pages = {1 -- 9}, year = {2023}, abstract = {Based on the European Space Agency (ESA) Science in Space Environment (SciSpacE) community White Paper "Human Physiology - Musculoskeletal system", this perspective highlights unmet needs and suggests new avenues for future studies in musculoskeletal research to enable crewed exploration missions. The musculoskeletal system is essential for sustaining physical function and energy metabolism, and the maintenance of health during exploration missions, and consequently mission success, will be tightly linked to musculoskeletal function. Data collection from current space missions from pre-, during-, and post-flight periods would provide important information to understand and ultimately offset musculoskeletal alterations during long-term spaceflight. In addition, understanding the kinetics of the different components of the musculoskeletal system in parallel with a detailed description of the molecular mechanisms driving these alterations appears to be the best approach to address potential musculoskeletal problems that future exploratory-mission crew will face. These research efforts should be accompanied by technical advances in molecular and phenotypic monitoring tools to provide in-flight real-time feedback.}, language = {en} } @inproceedings{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {Limit and shakedown analysis of structures under random strength}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {510 -- 518}, year = {2022}, abstract = {Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables.}, language = {en} } @article{ZhantlessovaSavitskayaKistaubayevaetal.2022, author = {Zhantlessova, Sirina and Savitskaya, Irina and Kistaubayeva, Aida and Ignatova, Ludmila and Talipova, Aizhan and Pogrebnjak, Alexander and Digel, Ilya}, title = {Advanced "Green" prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym14153224}, pages = {Artikel 3224}, year = {2022}, abstract = {Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for "grafting" of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.}, language = {en} } @article{SchoenrockMuckeltHastermannetal.2024, author = {Schoenrock, Britt and Muckelt, Paul E. and Hastermann, Maria and Albracht, Kirsten and MacGregor, Robert and Martin, David and Gunga, Hans-Christian and Salanova, Michele and Stokes, Maria J. and Warner, Martin B. and Blottner, Dieter}, title = {Muscle stiffness indicating mission crew health in space}, series = {Scientific Reports}, volume = {14}, journal = {Scientific Reports}, number = {Article number: 4196}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-024-54759-6}, pages = {13 Seiten}, year = {2024}, abstract = {Muscle function is compromised by gravitational unloading in space affecting overall musculoskeletal health. Astronauts perform daily exercise programmes to mitigate these effects but knowing which muscles to target would optimise effectiveness. Accurate inflight assessment to inform exercise programmes is critical due to lack of technologies suitable for spaceflight. Changes in mechanical properties indicate muscle health status and can be measured rapidly and non-invasively using novel technology. A hand-held MyotonPRO device enabled monitoring of muscle health for the first time in spaceflight (> 180 days). Greater/maintained stiffness indicated countermeasures were effective. Tissue stiffness was preserved in the majority of muscles (neck, shoulder, back, thigh) but Tibialis Anterior (foot lever muscle) stiffness decreased inflight vs. preflight (p < 0.0001; mean difference 149 N/m) in all 12 crewmembers. The calf muscles showed opposing effects, Gastrocnemius increasing in stiffness Soleus decreasing. Selective stiffness decrements indicate lack of preservation despite daily inflight countermeasures. This calls for more targeted exercises for lower leg muscles with vital roles as ankle joint stabilizers and in gait. Muscle stiffness is a digital biomarker for risk monitoring during future planetary explorations (Moon, Mars), for healthcare management in challenging environments or clinical disorders in people on Earth, to enable effective tailored exercise programmes.}, language = {en} } @inproceedings{GehlerOberBloebaumDachwald2009, author = {Gehler, M. and Ober-Bl{\"o}baum, S. and Dachwald, Bernd}, title = {Application of discrete mechanics and optimal control to spacecraft in non-keplerian motion around small solar system bodies}, series = {Procceedings of the 60th International Astronautical Congress}, booktitle = {Procceedings of the 60th International Astronautical Congress}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {1360 -- 1371}, year = {2009}, abstract = {Prolonged operations close to small solar system bodies require a sophisticated control logic to minimize propellant mass and maximize operational efficiency. A control logic based on Discrete Mechanics and Optimal Control (DMOC) is proposed and applied to both conventionally propelled and solar sail spacecraft operating at an arbitrarily shaped asteroid in the class of Itokawa. As an example, stand-off inertial hovering is considered, recently identified as a challenging part of the Marco Polo mission. The approach is easily extended to stand-off orbits. We show that DMOC is applicable to spacecraft control at small objects, in particular with regard to the fact that the changes in gravity are exploited by the algorithm to optimally control the spacecraft position. Furthermore, we provide some remarks on promising developments.}, language = {en} } @inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Design concept and modeling of an advanced solar photon thruster}, series = {Advances in the Astronautical Sciences}, booktitle = {Advances in the Astronautical Sciences}, publisher = {American Astronautical Society}, address = {San Diego, Calif.}, isbn = {978-087703554-1}, issn = {00653438}, pages = {723 -- 740}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), holds the potential of providing significant performance advantages over the flat solar sail. Previous SPT design concepts, however, do not consider shadowing effects and multiple reflections of highly concentrated solar radiation that would inevitably destroy the gossamer sail film. In this paper, we propose a novel advanced SPT (ASPT) design concept that does not suffer from these oversimplifications. We present the equations that describe the thrust force acting on such a sail system and compare its performance with respect to the conventional flat solar sail.}, language = {en} } @article{PogorelovaRogachevAkimbekovetal.2024, author = {Pogorelova, Natalia and Rogachev, Evgeniy and Akimbekov, Nuraly and Digel, Ilya}, title = {Effect of dehydration method on the micro- and nanomorphological properties of bacterial cellulose produced by Medusomyces gisevii on different substrates}, series = {Journal of materials science}, volume = {2024}, journal = {Journal of materials science}, publisher = {Springer Science + Business Media}, address = {Dordrecht}, issn = {1573-4803 (Online)}, doi = {10.1007/s10853-024-09596-3}, pages = {13 Seiten}, year = {2024}, abstract = {Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1\%, dried until a constant weight was reached) and freeze-drying (FD, treated at - 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity.}, language = {en} } @article{ZhenLiangStaatetal.2024, author = {Zhen, Manghao and Liang, Yunpei and Staat, Manfred and Li, Quanqui and Li, Jianbo}, title = {Discontinuous fracture behaviors and constitutive model of sandstone specimens containing non-parallel prefabricated fissures under uniaxial compression}, series = {Theoretical and Applied Fracture Mechanics}, volume = {131}, journal = {Theoretical and Applied Fracture Mechanics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8442}, doi = {10.1016/j.tafmec.2024.104373}, pages = {Artikel 104373}, year = {2024}, abstract = {The deformation and damage laws of non-homogeneous irregular structural planes in rocks are the basis for studying the stability of rock engineering. To investigate the damage characteristics of rock containing non-parallel fissures, uniaxial compression tests and numerical simulations were conducted on sandstone specimens containing three non-parallel fissures inclined at 0°, 45° and 90° in this study. The characteristics of crack initiation and crack evolution of fissures with different inclinations were analyzed. A constitutive model for the discontinuous fractures of fissured sandstone was proposed. The results show that the fracture behaviors of fissured sandstone specimens are discontinuous. The stress-strain curves are non-smooth and can be divided into nonlinear crack closure stage, linear elastic stage, plastic stage and brittle failure stage, of which the plastic stage contains discontinuous stress drops. During the uniaxial compression test, the middle or ends of 0° fissures were the first to crack compared to 45° and 90° fissures. The end with small distance between 0° and 45° fissures cracked first, and the end with large distance cracked later. After the final failure, 0° fissures in all specimens were fractured, while 45° and 90° fissures were not necessarily fractured. Numerical simulation results show that the concentration of compressive stress at the tips of 0°, 45° and 90° fissures, as well as the concentration of tensile stress on both sides, decreased with the increase of the inclination angle. A constitutive model for the discontinuous fractures of fissured sandstone specimens was derived by combining the logistic model and damage mechanic theory. This model can well describe the discontinuous drops of stress and agrees well with the whole processes of the stress-strain curves of the fissured sandstone specimens.}, language = {en} } @incollection{Dachwald2017, author = {Dachwald, Bernd}, title = {Light propulsion systems for spacecraft}, series = {Optical nano and micro actuator technology}, booktitle = {Optical nano and micro actuator technology}, editor = {Knopf, George K. and Otani, Yukitoshi}, publisher = {CRC Press}, address = {Boca Raton}, isbn = {9781315217628 (eBook)}, pages = {577 -- 598}, year = {2017}, language = {en} } @inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Mission analysis for an advanced solar photon thruster}, series = {60th International Astronautical Congress 2009, IAC 2009}, volume = {Vol. 8}, booktitle = {60th International Astronautical Congress 2009, IAC 2009}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {6838 -- 6851}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made.}, language = {en} } @article{RauschHarbrechtKahmannetal.2020, author = {Rausch, Valentin and Harbrecht, Andreas and Kahmann, Stephanie Lucina and Fenten, Thomas and Jovanovic, Nebojsa and Hackl, Michael and M{\"u}ller, Lars P. and Staat, Manfred and Wegmann, Kilian}, title = {Osteosynthesis of Phalangeal Fractures: Biomechanical Comparison of Kirschner Wires, Plates, and Compression Screws}, series = {The Journal of Hand Surgery}, volume = {45}, journal = {The Journal of Hand Surgery}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2020.04.010}, pages = {987.e1 -- 987.e8}, year = {2020}, abstract = {Purpose The aim of this study was to compare several osteosynthesis techniques (intramedullary headless compression screws, T-plates, and Kirschner wires) for distal epiphyseal fractures of proximal phalanges in a human cadaveric model. Methods A total of 90 proximal phalanges from 30 specimens (index, ring, and middle fingers) were used for this study. After stripping off all soft tissue, a transverse distal epiphyseal fracture was simulated at the proximal phalanx. The 30 specimens were randomly assigned to 1 fixation technique (30 per technique), either a 3.0-mm intramedullary headless compression screw, locking plate fixation with a 2.0-mm T-plate, or 2 oblique 1.0-mm Kirschner wires. Displacement analysis (bending, distraction, and torsion) was performed using optical tracking of an applied random speckle pattern after osteosynthesis. Biomechanical testing was performed with increasing cyclic loading and with cyclic load to failure using a biaxial torsion-tension testing machine. Results Cannulated intramedullary compression screws showed significantly less displacement at the fracture site in torsional testing. Furthermore, screws were significantly more stable in bending testing. Kirschner wires were significantly less stable than plating or screw fixation in any cyclic load to failure test setup. Conclusions Intramedullary compression screws are a highly stable alternative in the treatment of transverse distal epiphyseal phalangeal fractures. Kirschner wires seem to be inferior regarding displacement properties and primary stability. Clinical relevance Fracture fixation of phalangeal fractures using plate osteosynthesis may have the advantage of a very rigid reduction, but disadvantages such as stiffness owing to the more invasive surgical approach and soft tissue irritation should be taken into account. Headless compression screws represent a minimally invasive choice for fixation with good biomechanical properties.}, language = {en} } @article{QuittmannMeskemperAlbrachtetal.2020, author = {Quittmann, Oliver J. and Meskemper, Joshua and Albracht, Kirsten and Abel, Thomas and Foitschik, Tina and Str{\"u}der, Heiko K.}, title = {Normalising surface EMG of ten upper-extremity muscles in handcycling: Manual resistance vs. sport-specific MVICs}, series = {Journal of Electromyography and Kinesiology}, volume = {51}, journal = {Journal of Electromyography and Kinesiology}, number = {Article 102402}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2020.102402}, year = {2020}, abstract = {Muscular activity in terms of surface electromyography (sEMG) is usually normalised to maximal voluntary isometric contractions (MVICs). This study aims to compare two different MVIC-modes in handcycling and examine the effect of moving average window-size. Twelve able-bodied male competitive triathletes performed ten MVICs against manual resistance and four sport-specific trials against fixed cranks. sEMG of ten muscles [M. trapezius (TD); M. pectoralis major (PM); M. deltoideus, Pars clavicularis (DA); M. deltoideus, Pars spinalis (DP); M. biceps brachii (BB); M. triceps brachii (TB); forearm flexors (FC); forearm extensors (EC); M. latissimus dorsi (LD) and M. rectus abdominis (RA)] was recorded and filtered using moving average window-sizes of 150, 200, 250 and 300 ms. Sport-specific MVICs were higher compared to manual resistance for TB, DA, DP and LD, whereas FC, TD, BB and RA demonstrated lower values. PM and EC demonstrated no significant difference between MVIC-modes. Moving average window-size had no effect on MVIC outcomes. MVIC-mode should be taken into account when normalised sEMG data are illustrated in handcycling. Sport-specific MVICs seem to be suitable for some muscles (TB, DA, DP and LD), but should be augmented by MVICs against manual/mechanical resistance for FC, TD, BB and RA.}, language = {en} } @article{MalanHamerKaeneletal.2020, author = {Malan, Leone and Hamer, Mark and K{\"a}nel, Roland von and Kotliar, Konstantin and Wyk, Roelof D. van and Lambert, Gavin W. and Vilser, Walthard and Ziemssen, Tjalf and Schlaich, Markus P. and Smith, Wayne and Magnusson, Martin and Wentzel, Annemarie and Myburgh, Carlien E. and Steyn, Hendrik S. and Malan, Nico T.}, title = {Delayed retinal vein recovery responses indicate both non-adaptation to stress as well as increased risk for stroke: the SABPA study}, series = {Cardiovascular Journal of Africa}, volume = {26}, journal = {Cardiovascular Journal of Africa}, number = {31}, publisher = {Clinics Cardive Publishing}, address = {Durbanville}, issn = {1680-0745}, doi = {10.5830/CVJA-2020-031}, pages = {1 -- 12}, year = {2020}, language = {en} } @article{GossmannThomasHorvathetal.2020, author = {Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {A higher-throughput approach to investigate cardiac contractility in vitro under physiological mechanical conditions}, series = {Journal of Pharmacological and Toxicological Methods}, volume = {105}, journal = {Journal of Pharmacological and Toxicological Methods}, number = {Article 106843}, publisher = {Elsevier}, address = {New York, NY}, doi = {10.1016/j.vascn.2020.106843}, year = {2020}, language = {en} } @article{KoppSchunckGosauetal.2020, author = {Kopp, Alexander and Schunck, Laura and Gosau, Martin and Smeets, Ralf and Burg, Simon and Fuest, Sandra and Kr{\"o}ger, Nadja and Zinser, Max and Krohn, Sebastian and Behbahani, Mehdi and K{\"o}pf, Marius and Lauts, Lisa and Rutkowski, Rico}, title = {Influence of the casting concentration on the mechanical and optical properties of Fa/CaCl2-derived silk fibroin membranes}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {18 art. no. 6704}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21186704}, year = {2020}, abstract = {In this study, we describe the manufacturing and characterization of silk fibroin membranes derived from the silkworm Bombyx mori. To date, the dissolution process used in this study has only been researched to a limited extent, although it entails various potential advantages, such as reduced expenses and the absence of toxic chemicals in comparison to other conventional techniques. Therefore, the aim of this study was to determine the influence of different fibroin concentrations on the process output and resulting membrane properties. Casted membranes were thus characterized with regard to their mechanical, structural and optical assets via tensile testing, SEM, light microscopy and spectrophotometry. Cytotoxicity was evaluated using BrdU, XTT, and LDH assays, followed by live-dead staining. The formic acid (FA) dissolution method was proven to be suitable for the manufacturing of transparent and mechanically stable membranes. The fibroin concentration affects both thickness and transparency of the membranes. The membranes did not exhibit any signs of cytotoxicity. When compared to other current scientific and technical benchmarks, the manufactured membranes displayed promising potential for various biomedical applications. Further research is nevertheless necessary to improve reproducible manufacturing, including a more uniform thickness, less impurity and physiological pH within the membranes.}, language = {en} } @article{ConzenAlbannaWeissetal.2018, author = {Conzen, Catharina and Albanna, Walid and Weiss, Miriam and K{\"u}rten, David and Vilser, Walthard and Kotliar, Konstantin and Z{\"a}ske, Charlotte and Clusmann, Hans and Schubert, Gerrit Alexander}, title = {Vasoconstriction and Impairment of Neurovascular Coupling after Subarachnoid Hemorrhage: a Descriptive Analysis of Retinal Changes}, series = {Translational Stroke Research}, journal = {Translational Stroke Research}, number = {9}, publisher = {Springer Nature}, address = {Cham}, issn = {1868-601X}, doi = {10.1007/s12975-017-0585-8}, pages = {284 -- 293}, year = {2018}, abstract = {Impaired cerebral autoregulation and neurovascular coupling (NVC) contribute to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). Retinal vessel analysis (RVA) allows non-invasive assessment of vessel dimension and NVC hereby demonstrating a predictive value in the context of various neurovascular diseases. Using RVA as a translational approach, we aimed to assess the retinal vessels in patients with SAH. RVA was performed prospectively in 24 patients with acute SAH (group A: day 5-14), in 11 patients 3 months after ictus (group B: day 90 ± 35), and in 35 age-matched healthy controls (group C). Data was acquired using a Retinal Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and NVC using flicker-light excitation. Diameter of retinal vessels—central retinal arteriolar and venular equivalent—was significantly reduced in the acute phase (p < 0.001) with gradual improvement in group B (p < 0.05). Arterial NVC of group A was significantly impaired with diminished dilatation (p < 0.001) and reduced area under the curve (p < 0.01) when compared to group C. Group B showed persistent prolonged latency of arterial dilation (p < 0.05). Venous NVC was significantly delayed after SAH compared to group C (A p < 0.001; B p < 0.05). To our knowledge, this is the first clinical study to document retinal vasoconstriction and impairment of NVC in patients with SAH. Using non-invasive RVA as a translational approach, characteristic patterns of compromise were detected for the arterial and venous compartment of the neurovascular unit in a time-dependent fashion. Recruitment will continue to facilitate a correlation analysis with clinical course and outcome.}, language = {en} } @inproceedings{IomdinaKiselevaKotliaretal.2020, author = {Iomdina, Elena N. and Kiseleva, Anna A. and Kotliar, Konstantin and Luzhnov, Petr V.}, title = {Quantification of Choroidal Blood Flow Using the OCT-A System Based on Voxel Scan Processing}, series = {2020 International Conference on Biomedical Innovations and Applications (BIA)}, booktitle = {2020 International Conference on Biomedical Innovations and Applications (BIA)}, isbn = {978-1-7281-7073-2}, doi = {10.1109/BIA50171.2020.9244511}, pages = {41 -- 44}, year = {2020}, language = {en} } @article{NeumaierWeissVeldemanetal.2021, author = {Neumaier, Felix and Weiss, Miriam and Veldeman, Michael and Kotliar, Konstantin and Wiesmann, Martin and Schulze-Steinen, Henna and H{\"o}llig, Anke and Clusmann, Hans and Schubert, Gerrit Alexander and Albanna, Walid}, title = {Changes in endogenous daytime melatonin levels after aneurysmal subarachnoid hemorrhage - preliminary findings from an observational cohort study}, series = {Clinical Neurology and Neurosurgery}, volume = {208}, journal = {Clinical Neurology and Neurosurgery}, number = {Article No.: 106870}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0303-8467}, doi = {10.1016/j.clineuro.2021.106870}, year = {2021}, abstract = {Aneurysmal subarachnoid hemorrhage (aSAH) is associated with early and delayed brain injury due to several underlying and interrelated processes, which include inflammation, oxidative stress, endothelial, and neuronal apoptosis. Treatment with melatonin, a cytoprotective neurohormone with anti-inflammatory, anti-oxidant and anti-apoptotic effects, has been shown to attenuate early brain injury (EBI) and to prevent delayed cerebral vasospasm in experimental aSAH models. Less is known about the role of endogenous melatonin for aSAH outcome and how its production is altered by the pathophysiological cascades initiated during EBI. In the present observational study, we analyzed changes in melatonin levels during the first three weeks after aSAH.}, language = {en} } @article{BrockhausBehbahaniMurisetal.2021, author = {Brockhaus, Moritz K. and Behbahani, Mehdi and Muris, Farina and Jansen, Sebastian V. and Schmitz- Rode, Thomas and Steinseifer, Ulrich and Clauser, Johanna C.}, title = {In vitro thrombogenicity testing of pulsatile mechanical circulatory support systems: Design and proof-of-concept}, series = {Artificial Organs}, volume = {45}, journal = {Artificial Organs}, number = {12}, publisher = {Wiley}, address = {Weinheim}, issn = {1525-1594}, doi = {10.1111/aor.14046}, pages = {1513 -- 1521}, year = {2021}, abstract = {Thrombogenic complications are a main issue in mechanical circulatory support (MCS). There is no validated in vitro method available to quantitatively assess the thrombogenic performance of pulsatile MCS devices under realistic hemodynamic conditions. The aim of this study is to propose a method to evaluate the thrombogenic potential of new designs without the use of complex in-vivo trials. This study presents a novel in vitro method for reproducible thrombogenicity testing of pulsatile MCS systems using low molecular weight heparinized porcine blood. Blood parameters are continuously measured with full blood thromboelastometry (ROTEM; EXTEM, FIBTEM and a custom-made analysis HEPNATEM). Thrombus formation is optically observed after four hours of testing. The results of three experiments are presented each with two parallel loops. The area of thrombus formation inside the MCS device was reproducible. The implantation of a filter inside the loop catches embolizing thrombi without a measurable increase of platelet activation, allowing conclusions of the place of origin of thrombi inside the device. EXTEM and FIBTEM parameters such as clotting velocity (α) and maximum clot firmness (MCF) show a total decrease by around 6\% with a characteristic kink after 180 minutes. HEPNATEM α and MCF rise within the first 180 minutes indicate a continuously increasing activation level of coagulation. After 180 minutes, the consumption of clotting factors prevails, resulting in a decrease of α and MCF. With the designed mock loop and the presented protocol we are able to identify thrombogenic hot spots inside a pulsatile pump and characterize their thrombogenic potential.}, language = {en} } @inproceedings{TranStaat2021, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {FEM shakedown analysis of Kirchhoff-Love plates under uncertainty of strength}, series = {Proceedings of UNCECOMP 2021}, booktitle = {Proceedings of UNCECOMP 2021}, isbn = {978-618-85072-6-5}, doi = {10.7712/120221.8041.19047}, pages = {323 -- 338}, year = {2021}, abstract = {A new formulation to calculate the shakedown limit load of Kirchhoff plates under stochastic conditions of strength is developed. Direct structural reliability design by chance con-strained programming is based on the prescribed failure probabilities, which is an effective approach of stochastic programming if it can be formulated as an equivalent deterministic optimization problem. We restrict uncertainty to strength, the loading is still deterministic. A new formulation is derived in case of random strength with lognormal distribution. Upper bound and lower bound shakedown load factors are calculated simultaneously by a dual algorithm.}, language = {en} } @phdthesis{Jung2021, author = {Jung, Alexander}, title = {Electromechanical modelling and simulation of hiPSC-derived cardiac cell cultures}, publisher = {Universit{\"a}t Duisburg-Essen}, isbn = {978-3-9821811-1-0}, url = {http://nbn-resolving.de/https://nbn-resolving.org/urn:nbn:de:hbz:464-20210624-134942-7}, pages = {III, 135 Seiten}, year = {2021}, language = {en} } @article{HacklBuessKammerlohretal.2021, author = {Hackl, Michael and Buess, Eduard and Kammerlohr, Sandra and Nacov, Julia and Staat, Manfred and Leschinger, Tim and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {A "comma sign"-directed subscapularis repair in anterosuperior rotator cuff tears yields biomechanical advantages in a cadaveric model}, series = {The american journal of sports medicine}, volume = {49}, journal = {The american journal of sports medicine}, number = {12}, publisher = {Sage}, address = {London}, issn = {1552-3365}, doi = {10.1177/03635465211031506}, pages = {3212 -- 3217}, year = {2021}, abstract = {Background: Additional stabilization of the "comma sign" in anterosuperior rotator cuff repair has been proposed to provide biomechanical benefits regarding stability of the repair. Purpose: This in vitro investigation aimed to investigate the influence of a comma sign-directed reconstruction technique for anterosuperior rotator cuff tears on the primary stability of the subscapularis tendon repair. Study Design: Controlled laboratory study. Methods: A total of 18 fresh-frozen cadaveric shoulders were used in this study. Anterosuperior rotator cuff tears (complete full-thickness tear of the supraspinatus and subscapularis tendons) were created, and supraspinatus repair was performed with a standard suture bridge technique. The subscapularis was repaired with either a (1) single-row or (2) comma sign technique. A high-resolution 3D camera system was used to analyze 3-mm and 5-mm gap formation at the subscapularis tendon-bone interface upon incremental cyclic loading. Moreover, the ultimate failure load of the repair was recorded. A Mann-Whitney test was used to assess significant differences between the 2 groups. Results: The comma sign repair withstood significantly more loading cycles than the single-row repair until 3-mm and 5-mm gap formation occurred (P≤ .047). The ultimate failure load did not reveal any significant differences when the 2 techniques were compared (P = .596). Conclusion: The results of this study show that additional stabilization of the comma sign enhanced the primary stability of subscapularis tendon repair in anterosuperior rotator cuff tears. Although this stabilization did not seem to influence the ultimate failure load, it effectively decreased the micromotion at the tendon-bone interface during cyclic loading. Clinical Relevance: The proposed technique for stabilization of the comma sign has shown superior biomechanical properties in comparison with a single-row repair and might thus improve tendon healing. Further clinical research will be necessary to determine its influence on the functional outcome.}, language = {en} } @article{Staat2021, author = {Staat, Manfred}, title = {An extension strain type Mohr-Coulomb criterion}, series = {Rock mechanics and rock engineering}, volume = {54}, journal = {Rock mechanics and rock engineering}, number = {12}, publisher = {Springer Nature}, address = {Cham}, issn = {1434-453X}, doi = {10.1007/s00603-021-02608-7}, pages = {6207 -- 6233}, year = {2021}, abstract = {Extension fractures are typical for the deformation under low or no confining pressure. They can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. In this article, it is shown that the simple extension strain criterion makes unrealistic strength predictions in biaxial compression and tension. To overcome this major limitation, a new extension strain criterion is proposed by adding a weighted principal shear component to the simple criterion. The shear weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr-Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting extension failure modes, which are unexpected in the classical understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain leading to dilatancy. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak stress CP. Different from compressive loading, tensile loading requires only a limited number of critical cracks to cause failure. Therefore, for tensile stresses, the failure criteria must be modified somehow, possibly by a cut-off corresponding to the CI stress. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.}, language = {en} } @article{TopcuMadabhushiStaat2022, author = {Top{\c{c}}u, Murat and Madabhushi, Gopal S.P. and Staat, Manfred}, title = {A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius}, series = {International Journal of Solids and Structures}, volume = {239-240}, journal = {International Journal of Solids and Structures}, number = {Art. No. 111464}, publisher = {Elsevier}, address = {New York, NY}, issn = {0020-7683}, doi = {10.1016/j.ijsolstr.2022.111464}, year = {2022}, abstract = {A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP.}, language = {en} } @article{MandekarHollandThielenetal.2022, author = {Mandekar, Swati and Holland, Abigail and Thielen, Moritz and Behbahani, Mehdi and Melnykowycz, Mark}, title = {Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22041568}, pages = {1 -- 19}, year = {2022}, abstract = {Wearable EEG has gained popularity in recent years driven by promising uses outside of clinics and research. The ubiquitous application of continuous EEG requires unobtrusive form-factors that are easily acceptable by the end-users. In this progression, wearable EEG systems have been moving from full scalp to forehead and recently to the ear. The aim of this study is to demonstrate that emerging ear-EEG provides similar impedance and signal properties as established forehead EEG. EEG data using eyes-open and closed alpha paradigm were acquired from ten healthy subjects using generic earpieces fitted with three custom-made electrodes and a forehead electrode (at Fpx) after impedance analysis. Inter-subject variability in in-ear electrode impedance ranged from 20 kΩ to 25 kΩ at 10 Hz. Signal quality was comparable with an SNR of 6 for in-ear and 8 for forehead electrodes. Alpha attenuation was significant during the eyes-open condition in all in-ear electrodes, and it followed the structure of power spectral density plots of forehead electrodes, with the Pearson correlation coefficient of 0.92 between in-ear locations ELE (Left Ear Superior) and ERE (Right Ear Superior) and forehead locations, Fp1 and Fp2, respectively. The results indicate that in-ear EEG is an unobtrusive alternative in terms of impedance, signal properties and information content to established forehead EEG.}, language = {en} } @article{DefosseKleinschmidtSchmutzetal.2022, author = {Defosse, Jerome and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Staat, Manfred and Gatzweiler, Karl-Heinz and Wappler, Frank and Schieren, Mark}, title = {Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study}, series = {Journal of Cardiothoracic and Vascular Anesthesia}, volume = {36}, journal = {Journal of Cardiothoracic and Vascular Anesthesia}, number = {8, Part B}, publisher = {Elsevier}, address = {New York, NY}, issn = {1053-0770}, doi = {10.1053/j.jvca.2022.02.017}, pages = {3021 -- 3027}, year = {2022}, language = {en} } @article{BhattaraiMayStaatetal.2022, author = {Bhattarai, Aroj and May, Charlotte Anabell and Staat, Manfred and Kowalczyk, Wojciech and Tran, Thanh Ngoc}, title = {Layer-specific damage modeling of porcine large intestine under biaxial tension}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {10, Early Access}, publisher = {MDPI}, address = {Basel}, issn = {2306-5354}, doi = {10.3390/bioengineering9100528}, pages = {1 -- 17}, year = {2022}, abstract = {The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to closely similar microstructure and function with humans, biaxial tensile experiments on the porcine large intestine have been performed in this study. In this paper, we report hyperelastic characterization of the large intestine based on experiments in 102 specimens. We also report the theoretical analysis of the experimental results, including an exponential damage evolution function. The fracture energies and the threshold stresses are set as damage material parameters for the longitudinal muscular, the circumferential muscular and the submucosal collagenous layers. A biaxial tensile simulation of a linear brick element has been performed to validate the applicability of the estimated material parameters. The model successfully simulates the biomechanical response of the large intestine under physiological and non-physiological loads.}, language = {en} } @article{ColomboDriraFrotscheretal.2022, author = {Colombo, Daniele and Drira, Slah and Frotscher, Ralf and Staat, Manfred}, title = {An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis}, series = {International Journal for Numerical Methods in Engineering}, volume = {124}, journal = {International Journal for Numerical Methods in Engineering}, number = {2}, publisher = {Wiley}, address = {Chichester}, issn = {1097-0207}, doi = {10.1002/nme.7126}, pages = {402 -- 433}, year = {2022}, abstract = {Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear elements. These properties make the two methods very attractive. However, their implementation in a standard finite element code is nontrivial because it requires heavy and extensive modifications to the code architecture. In this article, we present an element-based formulation of ES-FEM and FS-FEM methods allowing to implement the two methods in a standard finite element code with no modifications to its architecture. Moreover, the element-based formulation permits to easily manage any type of element, especially in 3D models where, to the best of the authors' knowledge, only tetrahedral elements are used in FS-FEM applications found in the literature. Shape functions for non-simplex 3D elements are proposed in order to apply FS-FEM to any standard finite element.}, language = {en} } @article{KotliarOrtnerConradietal.2022, author = {Kotliar, Konstantin and Ortner, Marion and Conradi, Anna and Hacker, Patricia and Hauser, Christine and G{\"u}nthner, Roman and Moser, Michaela and Muggenthaler, Claudia and Diehl-Schmid, Janine and Priller, Josef and Schmaderer, Christoph and Grimmer, Timo}, title = {Altered retinal cerebral vessel oscillation frequencies in Alzheimer's disease compatible with impaired amyloid clearance}, series = {Neurobiology of Aging}, volume = {120}, journal = {Neurobiology of Aging}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0197-4580}, doi = {10.1016/j.neurobiolaging.2022.08.012}, pages = {117 -- 127}, year = {2022}, abstract = {Retinal vessels are similar to cerebral vessels in their structure and function. Moderately low oscillation frequencies of around 0.1 Hz have been reported as the driving force for paravascular drainage in gray matter in mice and are known as the frequencies of lymphatic vessels in humans. We aimed to elucidate whether retinal vessel oscillations are altered in Alzheimer's disease (AD) at the stage of dementia or mild cognitive impairment (MCI). Seventeen patients with mild-to-moderate dementia due to AD (ADD); 23 patients with MCI due to AD, and 18 cognitively healthy controls (HC) were examined using Dynamic Retinal Vessel Analyzer. Oscillatory temporal changes of retinal vessel diameters were evaluated using mathematical signal analysis. Especially at moderately low frequencies around 0.1 Hz, arterial oscillations in ADD and MCI significantly prevailed over HC oscillations and correlated with disease severity. The pronounced retinal arterial vasomotion at moderately low frequencies in the ADD and MCI groups would be compatible with the view of a compensatory upregulation of paravascular drainage in AD and strengthen the amyloid clearance hypothesis.}, language = {en} } @article{BayerTemizArtmannDigeletal.2020, author = {Bayer, Robin and Temiz Artmann, Ayseg{\"u}l and Digel, Ilya and Falkenstein, Julia and Artmann, Gerhard and Creutz, Till and Hescheler, J{\"u}rgen}, title = {Mechano-pharmacological testing of L-Type Ca²⁺ channel modulators via human vascular celldrum model}, series = {Cellular Physiology and Biochemistry}, volume = {54}, journal = {Cellular Physiology and Biochemistry}, publisher = {Cell Physiol Biochem Press}, address = {D{\"u}sseldorf}, issn = {1421-9778}, doi = {10.33594/000000225}, pages = {371 -- 383}, year = {2020}, abstract = {Background/Aims: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology. Methods: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer. The cell generated tensions deviations in the range of a few N/m² are evaluated by the CellDrum technology. This study focuses on the dilative and contractive effects of L-type Ca²⁺ channel agonists and antagonists, respectively. We analyzed the effects of Bay K8644, nifedipine and verapamil. Three different measurement modes were developed and applied to determine the most appropriate analysis technique for the study purpose. These three operation modes are called, particular time mode" (PTM), "long term mode" (LTM) and "real-time mode" (RTM). Results: It was possible to quantify the biomechanical response of haSMCs to the addition of vasoactive agents using CellDrum technology. Due to the supplementation of 100nM Bay K8644, the tension increased approximately 10.6\% from initial tension maximum, whereas, the treatment with nifedipine and verapamil caused a significant decrease in cellular tension: 10nM nifedipine decreased the biomechanical stress around 6,5\% and 50nM verapamil by 2,8\%, compared to the initial tension maximum. Additionally, all tested measurement modes provide similar results while focusing on different analysis parameters. Conclusion: The CellDrum technology allows highly sensitive biomechanical stress measurements of cultured haSMC monolayers. The mechanical stress responses evoked by the application of vasoactive calcium channel modulators were quantified functionally (N/m²). All tested operation modes resulted in equal findings, whereas each mode features operation-related data analysis.}, language = {en} } @article{AkimbekovDigelAbdievaetal.2021, author = {Akimbekov, Nuraly and Digel, Ilya and Abdieva, Gulzhamal and Ualieva, Perizat and Tastambek, Kuanysh}, title = {Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data}, series = {Biofuels}, volume = {12}, journal = {Biofuels}, number = {3}, publisher = {Taylor \& Francis}, address = {London}, issn = {1759-7277}, pages = {247 -- 258}, year = {2021}, abstract = {The vast metabolic potential of microbes in brown coal (lignite) processing and utilization can greatly contribute to innovative approaches to sustainable production of high-value products from coal. In this study, the multi-faceted and complex coal biosolubilization process by Bacillus sp. RKB 7 isolate from the Kazakhstan coal-mining soil is reported, and the derived products are characterized. Lignite solubilization tests performed for surface and suspension cultures testify to the formation of numerous soluble lignite-derived substances. Almost 24\% of crude lignite (5\% w/v) was solubilized within 14 days under slightly alkaline conditions (pH 8.2). FTIR analysis revealed various functional groups in the obtained biosolubilization products. Analyses of the lignite-derived humic products by UV-Vis and fluorescence spectrometry as well as elemental analysis yielded compatible results indicating the emerging products had a lower molecular weight and degree of aromaticity. Furthermore, XRD and SEM analyses were used to evaluate the biosolubilization processes from mineralogical and microscopic points of view. The findings not only contribute to a deeper understanding of microbe-mineral interactions in coal environments, but also contribute to knowledge of coal biosolubilization and bioconversion with regard to sustainable production of humic substances. The detailed and comprehensive analyses demonstrate the huge biotechnological potential of Bacillus sp. for agricultural productivity and environmental health.}, language = {en} } @article{QuittmannAbelAlbrachtetal.2020, author = {Quittmann, Oliver J. and Abel, Thomas and Albracht, Kirsten and Meskemper, Joshua and Foitschik, Tina and Str{\"u}der, Heiko K.}, title = {Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants}, series = {European Journal of Applied Physiology}, journal = {European Journal of Applied Physiology}, number = {120}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-6327}, doi = {10.1007/s00421-020-04373-x}, pages = {1403 -- 1415}, year = {2020}, abstract = {Purpose This study aims to investigate the biomechanics of handcycling during a continuous load trial (CLT) to assess the mechanisms underlying fatigue in upper body exercise. Methods Twelve able-bodied triathletes performed a 30-min CLT at a power output corresponding to lactate threshold in a racing recumbent handcycle mounted on a stationary ergometer. During the CLT, ratings of perceived exertion (RPE), tangential crank kinetics, 3D joint kinematics, and muscular activity of ten muscles of the upper extremity and trunk were examined using motion capturing and surface electromyography. Results During the CLT, spontaneously chosen cadence and RPE increased, whereas crank torque decreased. Rotational work was higher during the pull phase. Peripheral RPE was higher compared to central RPE. Joint range of motion decreased for elbow-flexion and radial-duction. Integrated EMG (iEMG) increased in the forearm flexors, forearm extensors, and M. deltoideus (Pars spinalis). An earlier onset of activation was found for M. deltoideus (Pars clavicularis), M. pectoralis major, M. rectus abdominis, M. biceps brachii, and the forearm flexors. Conclusion Fatigue-related alterations seem to apply analogously in handcycling and cycling. The most distal muscles are responsible for force transmission on the cranks and might thus suffer most from neuromuscular fatigue. The findings indicate that peripheral fatigue (at similar lactate values) is higher in handcycling compared to leg cycling, at least for inexperienced participants. An increase in cadence might delay peripheral fatigue by a reduced vascular occlusion. We assume that the gap between peripheral and central fatigue can be reduced by sport-specific endurance training.}, language = {en} } @inproceedings{PohleFroehlichDalitzRichteretal.2020, author = {Pohle-Fr{\"o}hlich, Regina and Dalitz, Christoph and Richter, Charlotte and Hahnen, Tobias and St{\"a}udle, Benjamin and Albracht, Kirsten}, title = {Estimation of muscle fascicle orientation in ultrasonic images}, series = {VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5}, booktitle = {VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5}, pages = {79 -- 86}, year = {2020}, language = {en} } @article{KnoxBruggemannGossmannetal.2020, author = {Knox, Ronald and Bruggemann, Andrea and Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Fertig, Niels and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {Combining physiological relevance and throughput for in vitro cardiac contractility measurement}, series = {Biophysical Journal}, volume = {118}, journal = {Biophysical Journal}, number = {Issue 3, Supplement 1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0006-3495}, doi = {10.1016/j.bpj.2019.11.3104}, pages = {570a}, year = {2020}, abstract = {Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these.}, language = {en} } @incollection{AzatKerimkulovaMansurovetal.2020, author = {Azat, Seitkhan and Kerimkulova, Almagul R. and Mansurov, Zulkhair A. and Adekenov, Sergazy and Artmann, Gerhard}, title = {The Use of Fusicoccin as Anticancer Compound}, series = {Carbon Nanomaterials in Biomedicine and the Environment}, booktitle = {Carbon Nanomaterials in Biomedicine and the Environment}, publisher = {Jenny Stanford Publishing}, address = {New York}, isbn = {978-0-429-42864-7}, doi = {10.1201/9780429428647-8}, pages = {149 -- 172}, year = {2020}, abstract = {The problem of creation and use of sorption materials is of current interest for the practice of the modern medicine and agriculture. Practical importance is production of a biostimulant using a carbon sorbent for a significant increase in productivity, which is very relevant for the regions of Kazakhstan. It is known that a plant phytohormone—fusicoccin—in nanogram concentrations transforms cancer cells to the state of apoptosis. In this regard, there is a scientific practical interest in the development of a highly efficient method for producing fusicoccin from extract of germinated wheat seeds. According to the results of computer modeling, cleaning composite components of fusicoccin using microporous carbon adsorbents not suitable as the size of the molecule of fusicoccin more than micropores and the optimum pore size for purification of constituents of fusicoccin was determined by computer simulation.}, language = {en} } @inproceedings{GrundmannBauerBorchersetal.2019, author = {Grundmann, Jan Thimo and Bauer, Wlademar and Borchers, Kai and Dumont, Etienne and Grimm, Christian D. and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron D. and Lange, Caroline and Maiwald, Volker and Meß, Jan-Gerd and Mikulz, Eugen and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Sasaki, Kaname and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Toth, Norbert and Ceriotti, Matteo and McInnes, Colin and Peloni, Alessandro and Biele, Jens and Krause, Christian and Dachwald, Bernd and Hercik, David and Lichtenheldt, Roy and Wolff, Friederike and Koncz, Alexander and Pelivan, Ivanka and Schmitz, Nicole and Boden, Ralf and Riemann, Johannes and Seboldt, Wolfgang and Wejmo, Elisabet and Ziach, Christian and Mikschl, Tobias and Montenegro, Sergio and Ruffer, Michael and Cordero, Federico and Tardivel, Simon}, title = {Solar sails for planetary defense \& high-energy missions}, series = {IEEE Aerospace Conference Proceedings}, booktitle = {IEEE Aerospace Conference Proceedings}, doi = {10.1109/AERO.2019.8741900}, pages = {1 -- 21}, year = {2019}, abstract = {20 years after the successful ground deployment test of a (20 m) 2 solar sail at DLR Cologne, and in the light of the upcoming U.S. NEAscout mission, we provide an overview of the progress made since in our mission and hardware design studies as well as the hardware built in the course of our solar sail technology development. We outline the most likely and most efficient routes to develop solar sails for useful missions in science and applications, based on our developed `now-term' and near-term hardware as well as the many practical and managerial lessons learned from the DLR-ESTEC Gossamer Roadmap. Mission types directly applicable to planetary defense include single and Multiple NEA Rendezvous ((M)NR) for precursor, monitoring and follow-up scenarios as well as sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation. Other mission types such as the Displaced L1 (DL1) space weather advance warning and monitoring or Solar Polar Orbiter (SPO) types demonstrate the capability of near-term solar sails to achieve asteroid rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. Some of these mission types such as SPO, (M)NR and RKI include separable payloads. For one-way access to the asteroid surface, nanolanders like MASCOT are an ideal match for solar sails in micro-spacecraft format, i.e. in launch configurations compatible with ESPA and ASAP secondary payload platforms. Larger landers similar to the JAXA-DLR study of a Jupiter Trojan asteroid lander for the OKEANOS mission can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. The high impact velocities and re-try capability achieved by the RKI mission type on a final orbit identical to the target asteroid's but retrograde to its motion enables small spacecraft size impactors to carry sufficient kinetic energy for deflection.}, language = {en} } @article{WerkhausenCroninAlbrachtetal.2019, author = {Werkhausen, Amelie and Cronin, Neil J. and Albracht, Kirsten and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R.}, title = {Distinct muscle-tendon interaction during running at different speeds and in different loading conditions}, series = {Journal of Applied Physiology}, volume = {127}, journal = {Journal of Applied Physiology}, number = {1}, issn = {1522-1601}, doi = {10.1152/japplphysiol.00710.2018}, pages = {246 -- 253}, year = {2019}, language = {en} } @article{AttarMerkKotliaretal.2019, author = {Attar, Mandana Hossein Zadeh and Merk, Hans F. and Kotliar, Konstantin and Wurpts, Gerda and R{\"o}seler, Stefani and Moll-Slodowy, Silke and Plange, Johann and Baron, Jens Malte and Balakirski, Galina}, title = {The CD63 basophil activation test as a diagnostic tool for assessing autoimmunity in patients with chronic spontaneous urticaria}, series = {European Journal of Dermatology}, volume = {29}, journal = {European Journal of Dermatology}, number = {6}, doi = {10.1684/ejd.2019.3680}, pages = {614 -- 618}, year = {2019}, language = {en} }