@inproceedings{DachwaldXuFeldmannetal.2011, author = {Dachwald, Bernd and Xu, Changsheng and Feldmann, Marco and Plescher, Engelbert}, title = {IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier}, series = {EGU General Assembly 2011 Vienna | Austria | 03 - 08 April 2011}, booktitle = {EGU General Assembly 2011 Vienna | Austria | 03 - 08 April 2011}, year = {2011}, abstract = {We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named "IceMole", is currently developed, built, and tested at the FH Aachen University of Applied Sciences' Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth).}, language = {en} } @article{MartinFrauenrathOezerdemetal.2011, author = {Martin, Conrad and Frauenrath, Tobias and {\"O}zerdem, Celal and Renz, Wolfgang and Niendorf, Thoralf}, title = {Development and evaluation of a small and mobile Magneto Alert Sensor (MALSE) to support safety requirements for magnetic resonance imaging}, series = {European Radiology}, volume = {21}, journal = {European Radiology}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1432-1084}, doi = {10.1007/s00330-011-2153-z}, pages = {2187 -- 2192}, year = {2011}, abstract = {Objective The purpose of this study is to (i) design a small and mobile Magnetic field ALert SEnsor (MALSE), (ii) to carefully evaluate its sensors to their consistency of activation/deactivation and sensitivity to magnetic fields, and (iii) to demonstrate the applicability of MALSE in 1.5 T, 3.0 T and 7.0 T MR fringe field environments. Methods MALSE comprises a set of reed sensors, which activate in response to their exposure to a magnetic field. The activation/deactivation of reed sensors was examined by moving them in/out of the fringe field generated by 7TMR. Results The consistency with which individual reed sensors would activate at the same field strength was found to be 100\% for the setup used. All of the reed switches investigated required a substantial drop in ambient magnetic field strength before they deactivated. Conclusions MALSE is a simple concept for alerting MRI staff to a ferromagnetic object being brought into fringe magnetic fields which exceeds MALSEs activation magnetic field. MALSE can easily be attached to ferromagnetic objects within the vicinity of a scanner, thus creating a barrier for hazardous situations induced by ferromagnetic parts which should not enter the vicinity of an MR-system to occur.}, language = {en} } @article{DieringerRenzLindeletal.2011, author = {Dieringer, Matthias A. and Renz, Wolfgang and Lindel, Tomasz D. and Seifert, Frank and Frauenrath, Tobias and von Knobelsdorf-Brenkenhoff, Florian and Waiczies, Helmar and Hoffmann, Werner and Rieger, Jan and Pfeiffer, Harald and Ittermann, Bernd and Schulz-Menger, Jeanette and Niendorf, Thoralf}, title = {Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T}, series = {Journal of Magnetic Resonance Imaging}, volume = {33}, journal = {Journal of Magnetic Resonance Imaging}, number = {3}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2586}, doi = {10.1002/jmri.22451}, pages = {736 -- 741}, year = {2011}, abstract = {Purpose To design and evaluate a four-channel cardiac transceiver coil array for functional cardiac imaging at 7T. Materials and Methods A four-element cardiac transceiver surface coil array was developed with two rectangular loops mounted on an anterior former and two rectangular loops on a posterior former. specific absorption rate (SAR) simulations were performed and a Burn:x-wiley:10531807:media:JMRI22451:tex2gif-stack-1 calibration method was applied prior to obtain 2D FLASH CINE (mSENSE, R = 2) images from nine healthy volunteers with a spatial resolution of up to 1 × 1 × 2.5 mm3. Results Tuning and matching was found to be better than 10 dB for all subjects. The decoupling (S21) was measured to be >18 dB between neighboring loops, >20 dB for opposite loops, and >30 dB for other loop combinations. SAR values were well within the limits provided by the IEC. Imaging provided clinically acceptable signal homogeneity with an excellent blood-myocardium contrast applying the Burn:x-wiley:10531807:media:JMRI22451:tex2gif-stack-2 calibration approach. Conclusion A four-channel cardiac transceiver coil array for 7T was built, allowing for cardiac imaging with clinically acceptable signal homogeneity and an excellent blood-myocardium contrast. Minor anatomic structures, such as pericardium, mitral, and tricuspid valves and their apparatus, as well as trabeculae, were accurately delineated.}, language = {en} } @misc{FrauenrathDieringerPateletal.2011, author = {Frauenrath, Tobias and Dieringer, Matthias and Patel, Nishant and Zerdem, Celal and Hentschel, Jan and Renz, Wolfgang and Niendorf, Thoralf}, title = {From Artifact to Merit: Cardiac Gated MRI at 7T \& 3T using Magneto-Hydrodynamic Effects for Synchronization}, series = {2011 ISMRM Annual Meeting Proceedings}, journal = {2011 ISMRM Annual Meeting Proceedings}, issn = {1545-4428}, year = {2011}, abstract = {ECG is corrupted by magneto-hydrodynamic effects at higher magnetic field strength. Artifacts in the ECG trace and severe T-wave elevation might be mis-interpreted as R-waves. MHD being inherently sensitive to blood flow and blood velocity provides an alternative approach for cardiac gating, even in peripheral target areas far away from the commonly used upper torso positions of ECG electrodes. This feature would be very beneficial to address traveling time induced motion artifacts and trigger latency related issues raised by ECG-gated peripheral MR angiography. For all those reasons, this work proposes the use of MHD-trigger for cardiac gated MR.}, language = {en} } @misc{FrauenrathdeGeyerd'OrthNiendorf2011, author = {Frauenrath, Tobias and de Geyer d'Orth, Thibaut and Niendorf, Thoralf}, title = {Assessment of Accuracy \& Reproducibility of ECG, Pulse Oximetry \& Phonocardiogram Gating of Cardiac MRI at 7T}, series = {2011 ISMRM Annual Meeting Proceedings}, journal = {2011 ISMRM Annual Meeting Proceedings}, issn = {1545-4428}, year = {2011}, abstract = {At (ultra)high magnetic fields the artifact sensitivity of ECG recordings increases. This bears the risk of R-wave mis-registration which has been consistently reported for ECG triggered CMR at 7.0T. Realizing the constraints of conventional ECG, acoustic cardiac triggering (ACT) has been proposed. The clinical ACT has not been carefully examined yet. For this reason, this work scrutinizes the suitability, accuracy and reproducibility of ACT for CMR at 7.0T. For this purpose, the trigger reliability and trigger detection variance are examined together with an qualitative and quantitative assessment of image quality of the heart at 7.0T.}, language = {en} } @misc{MartinFrauenrathZerdemetal.2011, author = {Martin, Conrad Steven and Frauenrath, Tobias and Zerdem, Celal and Renz, Wolfgang and Niendorf, Thoralf}, title = {Evaluation of Magneto Alert Sensor (MALSE) to Improve MR Safety by Decreasing the Incidence of Ferromagnetic Projectile Accidents}, series = {2011 ISMRM Annual Meeting Proceedings}, journal = {2011 ISMRM Annual Meeting Proceedings}, issn = {1545-4428}, year = {2011}, abstract = {The magnetic forces of fringe magnetic fields of MR systems on ferromagnetic components can impose a severe patient, occupational health and safety hazard. MRI accidents are listed as number 9 of the top 10 risks in modern medicine. With the advent of ultrahigh field MR systems including passively shielded magnet versions, this risk, commonly known as the missile or projectile effect is even more pronounced. A strategy employing magnetic field sensors which can be attached to ferromagnetic objects that are commonly used in a clinical environment is conceptually appealing for the pursuit of reducing the risk of ferromagnetic projectile accidents.}, language = {en} }