@misc{TippkoetterUlber2009, author = {Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Eine magnetische horizontale Wirbelschicht f{\"u}r die Durchmischung und R{\"u}ckhaltung von magnetisierbaren Mikropartikeln im Durchfluss}, series = {Chemie Ingenieur Technik}, volume = {81}, journal = {Chemie Ingenieur Technik}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.200950076}, pages = {1168}, year = {2009}, abstract = {Magnetisierbare Partikel als Tr{\"a}ger von Katalysatoren k{\"o}nnen durch Anlegen eines magnetisches Feldes einfach und schnell abgetrennt werden. Die Wiedergewinnung von wertvollen Enzymen unter geringem Energie- und Materialeinsatz der magnetischen Abtrennung er{\"o}ffnet einen Wettbewerbsvorteil f{\"u}r Produktionsprozesse. Die Abtrennung von magnetisierbaren Partikeln vom {\"U}berstand wird {\"u}blicherweise entweder durch Anlegen eines {\"a}ußeren Magnetfelds und der resultierenden Ablagerung der Partikel an den Reaktorw{\"a}nden oder durch Hochgradientenmagnetseparation (HGMS)durchgef{\"u}hrt. Beide Verfahren resultieren meist in der Bildung eines Filterkuchens aus Magnetpartikeln und den Feststoffen des Reaktionsmediums. Das magnetische horizontale Wirbelbett erm{\"o}glicht simultan eine kontinuierliche Reaktionsf{\"u}hrung und die R{\"u}ckhaltung der Partikel im Durchfluss. Die Partikelsuspension fließt durch einen Rohrreaktor, der in einem Magnetfeld mit wechselnden Feldgradienten eingebracht ist. Die {\"A}nderung des Magnetfeldgradienten erfolgt entgegen der Str{\"o}mungsrichtung der Reaktionsl{\"o}sung. Durch alternierende Feldmaxima an den beiden Seiten des Reaktors werden die magnetisierbaren Partikel zu dessen W{\"a}nden gezogen. Bei Umkehrung des Feldes wandern die Partikel an die gegen{\"u}berliegende Reaktorwand. Durch Wahl einer geeigneten Wechselfrequenz kann eine kontinuierliche Durchmischung und R{\"u}ckhaltung der Mikropartikel im durchstr{\"o}mten Rohr erreicht werden. Somit k{\"o}nnen Immobilisierungsreaktionen und Biotransformationen mit den Partikelsystemen im Durchfluss durchgef{\"u}hrt werden.}, language = {en} } @article{HafidiElHatkaSchmitzetal.2024, author = {Hafidi, Youssef and El Hatka, Hicham and Schmitz, Dominik and Krauss, Manuel and Pettrak, J{\"u}rgen and Biel, Markus and Ittobane, Najim}, title = {Sustainable soil additives for water and micronutrient supply: swelling and chelating properties of polyaspartic acid hydrogels utilizing newly developed crosslinkers}, series = {Gels}, volume = {10}, journal = {Gels}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2310-2861}, doi = {10.3390/gels10030170}, pages = {Artikel 170}, year = {2024}, abstract = {Drought and water shortage are serious problems in many arid and semi-arid regions. This problem is getting worse and even continues in temperate climatic regions due to climate change. To address this problem, the use of biodegradable hydrogels is increasingly important for the application as water-retaining additives in soil. Furthermore, efficient (micro-)nutrient supply can be provided by the use of tailored hydrogels. Biodegradable polyaspartic acid (PASP) hydrogels with different available (1,6-hexamethylene diamine (HMD) and L-lysine (LYS)) and newly developed crosslinkers based on diesters of glycine (GLY) and (di-)ethylene glycol (DEG and EG, respectively) were synthesized and characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) and regarding their swelling properties (kinetic, absorbency under load (AUL)) as well as biodegradability of PASP hydrogel. Copper (II) and zinc (II), respectively, were loaded as micronutrients in two different approaches: in situ with crosslinking and subsequent loading of prepared hydrogels. The results showed successful syntheses of di-glycine-ester-based crosslinkers. Hydrogels with good water-absorbing properties were formed. Moreover, the developed crosslinking agents in combination with the specific reaction conditions resulted in higher water absorbency with increased crosslinker content used in synthesis (10\% vs. 20\%). The prepared hydrogels are candidates for water-storing soil additives due to the biodegradability of PASP, which is shown in an exemple. The incorporation of Cu(II) and Zn(II) ions can provide these micronutrients for plant growth.}, language = {en} } @article{HoffstadtNikolauszKrafftetal.2024, author = {Hoffstadt, Kevin and Nikolausz, Marcell and Krafft, Simone and Bonatelli, Maria and Kumar, Vivekanantha and Harms, Hauke and Kuperjans, Isabel}, title = {Optimization of the ex situ biomethanation of hydrogen and carbon dioxide in a novel meandering plug flow reactor: start-up phase and flexible operation}, series = {Bioengineering}, volume = {11}, journal = {Bioengineering}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2306-5354}, doi = {10.3390/bioengineering11020165}, pages = {18 Seiten}, year = {2024}, language = {en} } @article{AdelsMonakhova2024, author = {Adels, Klaudia and Monakhova, Yulia}, title = {Low-field NMR spectroscopic study of e-cigarettes: Is determination of only nicotine and organic carrier solvents possible?}, series = {Microchemical Journal}, volume = {203}, journal = {Microchemical Journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1095-9149}, doi = {10.1016/j.microc.2024.110859}, pages = {9 Seiten}, year = {2024}, abstract = {Electronic cigarettes (e-cigarettes) have become popular worldwide with the market growing exponentially in some countries. The absence of product standards and safety regulations requires urgent development of analytical methodologies for the holistic control of the growing diversity of such products. An approach based on low-field nuclear magnetic resonance (LF-NMR) at 80 MHz is presented for the simultaneous determination of key parameters: carrier solvents (vegetable glycerine (VG), propylene glycol (PG) and water), total nicotine as well as free-base nicotine fraction. Moreover, qualitative and quantitative determination of fourteen weak organic acids deliberately added to enhance sensory characteristics of e-cigarettes was possible. In most cases these parameters can be rapidly and conveniently determined without using any sample manipulation such as dilution, extraction or derivatization steps. The method was applied for 37 authentic e-cigarettes samples. In particular, eight different organic acids with the content up to 56 mg/mL were detected. Due to its simplicity, the method can be used in routine regulatory control as well as to study release behaviour of nicotine and other e-cigarettes constituents in different products.}, language = {en} } @article{TixMollKrafftetal.2024, author = {Tix, Julian and Moll, Fabian and Krafft, Simone and Betsch, Matthias and Tippk{\"o}tter, Nils}, title = {Hydrogen production from enzymatic pretreated organic waste with thermotoga neapolitana}, series = {Energies}, volume = {17}, journal = {Energies}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en17122938}, pages = {20 Seiten}, year = {2024}, abstract = {Biomass from various types of organic waste was tested for possible use in hydrogen production. The composition consisted of lignified samples, green waste, and kitchen scraps such as fruit and vegetable peels and leftover food. For this purpose, the enzymatic pretreatment of organic waste with a combination of five different hydrolytic enzymes (cellulase, amylase, glucoamylase, pectinase and xylase) was investigated to determine its ability to produce hydrogen (H2) with the hydrolyzate produced here. In course, the anaerobic rod-shaped bacterium T. neapolitana was used for H2 production. First, the enzymes were investigated using different substrates in preliminary experiments. Subsequently, hydrolyses were carried out using different types of organic waste. In the hydrolysis carried out here for 48 h, an increase in glucose concentration of 481\% was measured for waste loads containing starch, corresponding to a glucose concentration at the end of hydrolysis of 7.5 g·L-1. In the subsequent set fermentation in serum bottles, a H2 yield of 1.26 mmol H2 was obtained in the overhead space when Terrific Broth Medium with glucose and yeast extract (TBGY medium) was used. When hydrolyzed organic waste was used, even a H2 yield of 1.37 mmol could be achieved in the overhead space. In addition, a dedicated reactor system for the anaerobic fermentation of T. neapolitana to produce H2 was developed. The bioreactor developed here can ferment anaerobically with a very low loss of produced gas. Here, after 24 h, a hydrogen concentration of 83\% could be measured in the overhead space.}, language = {en} } @misc{TippkoetterUlber2012, author = {Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Rezension zu: Encyclopedia of Industrial Biotechnology, Vol. 1-7. By MC Flickinger.}, series = {Chemie Ingenieur Technik}, volume = {6}, journal = {Chemie Ingenieur Technik}, number = {84}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201290052}, pages = {936}, year = {2012}, language = {en} } @article{OehlenschlaegerVolkmarStiefelmaieretal.2024, author = {Oehlenschl{\"a}ger, Katharina and Volkmar, Marianne and Stiefelmaier, Judith and Langsdorf, Alexander and Holtmann, Dirk and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {New insights into the influence of pre-culture on robust solvent production of C. acetobutylicum}, series = {Applied Microbiology and Biotechnology}, volume = {108}, journal = {Applied Microbiology and Biotechnology}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1432-0614}, doi = {10.1007/s00253-023-12981-8}, pages = {10 Seiten}, year = {2024}, abstract = {Clostridia are known for their solvent production, especially the production of butanol. Concerning the projected depletion of fossil fuels, this is of great interest. The cultivation of clostridia is known to be challenging, and it is difficult to achieve reproducible results and robust processes. However, existing publications usually concentrate on the cultivation conditions of the main culture. In this paper, the influence of cryo-conservation and pre-culture on growth and solvent production in the resulting main cultivation are examined. A protocol was developed that leads to reproducible cultivations of Clostridium acetobutylicum. Detailed investigation of the cell conservation in cryo-cultures ensured reliable cell growth in the pre-culture. Moreover, a reason for the acid crash in the main culture was found, based on the cultivation conditions of the pre-culture. The critical parameter to avoid the acid crash and accomplish the shift to the solventogenesis of clostridia is the metabolic phase in which the cells of the pre-culture were at the time of inoculation of the main culture; this depends on the cultivation time of the pre-culture. Using cells from the exponential growth phase to inoculate the main culture leads to an acid crash. To achieve the solventogenic phase with butanol production, the inoculum should consist of older cells which are in the stationary growth phase. Considering these parameters, which affect the entire cultivation process, reproducible results and reliable solvent production are ensured.}, language = {en} } @article{HengsbachEngelCwienczeketal.2023, author = {Hengsbach, Jan-Niklas and Engel, Mareike and Cwienczek, Marcel and Stiefelmaier, Judith and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Scalable unseparated bioelectrochemical reactors by using a carbon fiber brush as stirrer and working electrode}, series = {ChemElectroChem}, volume = {10}, journal = {ChemElectroChem}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.202300440}, pages = {9 Seiten}, year = {2023}, abstract = {The concept of energy conversion into platform chemicals using bioelectrochemical systems (BES) has gained increasing attention in recent years, as the technology simultaneously provides an opportunity for sustainable chemical production and tackles the challenge of Power-to-X technologies. There are many approaches to realize the industrial scale of BES. One concept is to equip standard bioreactors with static electrodes. However, large installations resulted in a negative influence on various reactor parameters. In this study, we present a new single-chamber BES based on a stirred tank reactor in which the stirrer was replaced by a carbon fiber brush, performing the functions of the working electrode and the stirrer. The reactor is characterized in abiotic studies and electro-fermentations with Clostridium acetobutylicum. Compared to standard reactors an increase in butanol production of 20.14±3.66 \% shows that the new BES can be efficiently used for bioelectrochemical processes.}, language = {en} } @misc{RothTippkoetter2016, author = {Roth, J. and Tippk{\"o}tter, Nils}, title = {New Approach for Enzymatic Hydrolysis of Lignocellulose with Selective Diffusion Separation of the Monosaccharide Products}, series = {Chemie Ingenieur Technik}, volume = {88}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201650301}, pages = {1237}, year = {2016}, abstract = {Enzymatic hydrolysis of lignocellulosic material plays an important role in the classical biorefinery approach. Apart from the pretreatment of the raw material, hydrolysis is the basis for the conversion of the cellulose and hemicellulose fraction into fermentable sugars. After hydrolysis, usually a solid-liquid separation takes place, in order to separate the residual plant material from the sugar-rich fraction, which can be subsequently used in a fermentation step. In order to factor out the separation step, the usage of in alginate immobilized crude cellulose fiber beads (CFBs) were evaluated. Pretreated cellulose fibers are incorporated in an alginate matrix together with the relevant enzymes. In doing so, sugars diffuse trough the alginate matrix, allowing a simplified delivery into the surrounding fluid. This again reduces product inhibition of the glucose on the enzyme catalysts. By means of standardized bead production the hydrolysis in lab scale was possible. First results show that liberation of glucose and xylose is possible, allowing a maximum total sugar yield of 75 \%.}, language = {en} } @article{MuesgenanntKoersMcNeilRadchenkoetal.2023, author = {Mues genannt Koers, Lucas and McNeil, S. W. and Radchenko, V. and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Production of Co-58m in a siphon-style liquid target on a medical cyclotron}, volume = {195}, number = {Art. 110734}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0969-8043}, doi = {10.1016/j.apradiso.2023.110734}, year = {2023}, abstract = {We present the production of 58mCo on a small, 13 MeV medical cyclotron utilizing a siphon style liquid target system. Different concentrated iron(III)-nitrate solutions of natural isotopic distribution were irradiated at varying initial pressures and subsequently separated by solid phase extraction chromatography. The radio cobalt (58m/gCo and 56Co) was successfully produced with saturation activities of (0.35 ± 0.03) MBq μA-1 for 58mCo with a separation recovery of (75 ± 2) \% of cobalt after one separation step utilizing LN-resin.}, language = {en} } @article{MuesgenanntKoersPrevostPaulssenetal.2023, author = {Mues genannt Koers, Lucas and Prevost, David and Paulßen, Elisabeth and Hoehr, Cornelia}, title = {Density reduction effects on the production of [11C]CO2 in Nb-body targets on a medical cyclotron}, volume = {199}, number = {Art. 110911}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.apradiso.2023.110911}, year = {2023}, abstract = {Medical isotope production of 11C is commonly performed in gaseous targets. The power deposition of the proton beam during the irradiation decreases the target density due to thermodynamic mixing and can cause an increase of penetration depth and divergence of the proton beam. In order to investigate the difference how the target-body length influences the operation conditions and the production yield, a 12 cm and a 22 cm Nb-target body containing N2/O2 gas were irradiated using a 13 MeV proton cyclotron. It was found that the density reduction has a large influence on the pressure rise during irradiation and the achievable radioactive yield. The saturation activity of [11C]CO2 for the long target (0.083 Ci/μA) is about 10\% higher than in the short target geometry (0.075 Ci/μA).}, language = {en} }